• Title/Summary/Keyword: 방사선선량

Search Result 3,586, Processing Time 0.027 seconds

Hematological Change in Mice Injected with Radiosensitizer and Irradiated with High-dose Radiation (방사선 증감제를 투여한 마우스에 고 에너지 방사선 조사 후 혈액학적 변화에 관한 연구)

  • Ji, Yeon-Sang;Dong, Kyung-Rae;Jung, Myo-Young;Park, Yong-Soon;Dong, Cha-Bun;Ryu, Young-Hwan
    • The Journal of the Korea Contents Association
    • /
    • v.9 no.12
    • /
    • pp.357-363
    • /
    • 2009
  • The current population of elderly is increasing and the with an extended average lifespan, the frequency of cancerous occurrences have also increased, with these increases and the increase in radiotherapy for cancer patients, recognitions of harm and importance have become known. This article was known tumor treatment of patients with hematopoietic disorder by doing a comparative study on the changes in blood cells caused by the acute effects of trace dose to high dose of radiation exposed to mice. According to the sensitizer injection may give rise to harm to the components of peripheral blood. This material needs to be considered when for treating tumor patients and the risks of hematopoietic harm and believe that radiation therapy will be reasonable.

Radiation Exposure on Radiation Workers of Nuclear Power Plants in Korea : 2009-2013 (국내 원전 종사자의 방사선량 : 2009-2013)

  • Lim, Young-khi
    • Journal of Radiation Protection and Research
    • /
    • v.40 no.3
    • /
    • pp.162-167
    • /
    • 2015
  • Although the perfomance indicators of the nuclear power plants in Korea show optimal, it requires detailed analysis and discussion centered on the radiation dose. As analysis methods, analysis on the radiation dose of nuclear power plants over the past five years was assessed by comparing the relevant radiation dose of radiation workers and per capita average annual radiation dose of the world's major nuclear power stations was also analyzed. The radiation workers over the annual radiation dose limit of 50 mSv were not. The contrast ratio of the radiation exposure according to the reactor type was the normal operation of PHWR was 6.2% higher than those of the PWR. This shows the radiation work of PHWR during normal driving operation is much more than those of PWR. According to the Performance Indicators of the World Association of Nuclear Operator, the annual radiation dose per unit in 2013 showed 527 man-mSv of Korea is the best country among the major nuclear power generating states, the world average was 725 man-mSv. The annual per capita radiation dose is about 80% less than 1 mSv of the public dose limit and also the average per capita dose showed a very low level as 0.82 mSv. Workers in related organizations showed 1.07 mSv, the non-destructive inspection agency workers showed 3.87 mSv. The remarkable results were due to radiation reduced program such as development of radiation shielding and radiation protection. In conclusion, the radiation exposured dose of nuclear power plants workers in Korea showed a trend which is ideally reduced. But more are expected to be difficul and the psychological insecurity against the operation of the nuclear power plants is existed to the residents near the nuclear power plants. So the radiation dose reduction policy and radiation dose follow up study of nuclear power plants will be continously excuted.

Entrance Surface Dose according to Dose Calculation : Head and Wrist (피폭선량 산출을 통한 피부입사선량 계산: 머리 및 손목을 중심으로)

  • Sung, Ho-Jin;Han, Jae-Bok;Song, Jong-Nam;Choi, Nam-Gil
    • Journal of radiological science and technology
    • /
    • v.39 no.3
    • /
    • pp.305-312
    • /
    • 2016
  • This study were compared with the direct measurement and indirect dose methods through various dose calculation in head and wrist. And, the modified equation was proposed considering equipment type, setting conditions, tube voltage, inherent filter, added filter and its accompanied back scatter factor. As a result, it decreased the error of the direct measurement than the existing dose calculation. Accordingly, diagnostic radiography patient dose comparison would become easier and radiogrphic exposure control and evaluation will become more efficient. The study findings are expected to be useful in patients' effective dose rate evaluation and dose reduction.

Quality Assurance of Brachytherapy System(Physical Aspects) (근접방사선치료 시스템의 QA(물리적 측면))

  • Ji, Young-Hoon
    • Progress in Medical Physics
    • /
    • v.4 no.1
    • /
    • pp.17-21
    • /
    • 1993
  • 근접방사선치료는 방사성동위원소를 종양에 밀착시키거나 또는 종양내에 직접 삽입하여 치료하는 방법으로서 종양에는 일시에 많은 선량을 주는 반면 주위 정상조직에는 선량을 최소화시킬 수 있는 장점이 있다. 따라서 근래에 들어 종양치료에 있어서 외부방사선치료와 병행하여 근접방사선치료를 시행하는 병원이 증가하고 있다. 그러나 근접방사선치료는 방출 방사선의 에너지가 낮고, 대부분 짧은 반감기를 가지며, 소형의, 수 mCi에서 수Ci 정도의 방사능을 가진 방사성동위원소들을 인체에 직접 삽입하는 것으로 정확한 선량 분포를 위해서는 방사성동위원소의 방사능량, 위치, 분포 등의 정확성 확보가 절실히 요구된다. 따라서 이 논문은 근접방사선치료시스템의 QA프로그램 개발을 위하여 작성하였다.

  • PDF

A Study on the Measurement Linearity of Photoluminescent Dosimeter (형광유리선량계의 계측 직선성 연구)

  • Jeong, Kyeong-Hwan;Jung, Dong-Kyung;Seo, Jeong-Min
    • Journal of the Korean Society of Radiology
    • /
    • v.15 no.6
    • /
    • pp.841-847
    • /
    • 2021
  • Related institutions that use radiation are diverse in Korea, such as research, medical care, and education. Recently, the number of examinations and visits to medical institutions is increasing. As a result, the number of radiological examinations in medical institutions is increasing. Radiation safety management is necessary as well as exposure of radiation workers. For safety management, first of all, it is necessary to wear the personal exposure dosimeter correctly and measure it accurately after wearing it. This study tries to evaluate and verify the measurement straightness of PLD devices by radiation of a diagnostic generator. Radiation division irradiation time interval was measured after irradiating 10 times at 10, 30, and 60 sec and irradiating the irradiation distance from 30 to 100 cm at 10 cm intervals to measure the change in absorbed dose depending on the distance. As a result, there was no difference in absorbed dose by time interval. This is considered to be helpful in various studies by using a diagnostic generator for the study of high absorbed dose.

A Measurement of Exposure Dose for Patient Transporter (환자 이송원의 피폭선량 측정)

  • Song, Chaerim;Lee, Wanghui;Ahn, Sungmin
    • Journal of the Korean Society of Radiology
    • /
    • v.13 no.3
    • /
    • pp.433-438
    • /
    • 2019
  • The medical institutions use radiation generating devices and radioactive isotopes to diagnose and treat patients. The patient transporter performs work in an environment that is more likely to be exposed to radiation when compared with the general public, such as inevitably entering the radiation management area for patient transfer, or transferring the isotope-administered patient at a short distance. For this reason, we conducted a study to determine the degree of exposure of the patient transporter. The 12 patient transporters working at Incheon A General Hospital are eligible. From April 1, 2019 to April 30, 2019, the dosimeter was used in the chest for one month and the accumulated dose was measured. The dosimeter used was a Optically Stimulated Luminescence Dosimetry (OSLD) and the dose reading was OSLD Microstar Reading System. As a result of cumulative dose measurement for one month, the average of the deep dose was 0.13 mSv and the surface dose was 0.13 mSv, and the cumulative dose for one month was multiplied by 12 to estimate the cumulative dose expectation As a result, the average of the deep dose and the surface dose were 1.52 mSv and 1.51 mSv, respectively. It is necessary to classify the patient transporter as a frequent visitor in order to measure and manage the exposure dose, increase the knowledge of protection against radiation through education and training, and prevent radiation trouble through medical examination.

Basic Principles of CT Dose Index and Understanding of CT Parameter for Dose Reduction Technique (CT선량지표의 원리와 선량감소 방안에 관한 연구)

  • Kim, Jung-Su;Kwon, Soon-Mu;Kim, Jung-Min
    • Journal of radiological science and technology
    • /
    • v.38 no.1
    • /
    • pp.51-61
    • /
    • 2015
  • Computed tomography(CT) using radiation have potential risks. All medical radiographic examinations should require the justification of medical imaging examinations and optimization of the image quality and radiation exposure. The CT examination was higher radiation dose then general radiography. Especially pediatric CT examinations need to great caution of radiation risk. Because of pediatric patient was more sensitive of radiation exposure. Therefore, physician should consider the knowledge of CT radiation exposure indicator information for reduce a needless radiation exposure. This article was aim to understanding of CT exposure indicator, size-specific dose estimates by American Association of Physicists in Medicine (AAPM) report 204, XR 25 and understanding of CT dose reduction technique.