• Title/Summary/Keyword: 방사선량 측정기

Search Result 38, Processing Time 0.022 seconds

Induced Activity and Space Dose Distribution from Medical Linear Accelerator (의료용(醫療用) 선형가속기(線型加速器)에 의한 산난공간(散亂空間) 선량분포(線量分布)와 유도방사능(誘導放射能))

  • Chu, Sung-Sil;Park, Chang-Yun
    • Journal of Radiation Protection and Research
    • /
    • v.11 no.1
    • /
    • pp.51-56
    • /
    • 1986
  • It is important to measure and protect from the radiation space dose and induced activity at the high energy medical linear accelerator facilities. These are to consider the additional risk to patients undergoing treatment, machine operators and staff members. Measurements of the space dose distribution and induced radioactivity at the 18 MeV medical linear accelerator facility in the Yonsei Cancer Center. 1. Exposure space dose for 300 rads monitor doses of 18 MeV electron are measured as 50 mR at 1 meter from patients. 2. Exposure space dose for 300 rads monitor doses of 10 MV X-ray are detected as 350 mR at 1 meter from phantom. 3. Induced radioactivity by photonuclear reaction was measured as 0.65 mR/hr from collimater after 30 Gy(3,000 rads) irradiated. 4. Analyzing the decay curves and energy spectrum of induced radioactivity, detected a few materials to be activated by photoneutron reaction, $^{65}Cu({\gamma}{\cdot}n)\;^{64}Cu,\;^{186}W({\gamma}{\cdot}n)\;^{185}W,\;^{181}Ta({\gamma}{\cdot}n)\;^{180}Ta,\;^{199}Au({\gamma}{\cdot}n)\;^{198}Au$.

  • PDF

Thermally Stimulated Currents in Gamma Irradiated Polymer (감마선에 조사된 중합체의 열자극 전류)

  • Chu, Sung-Sil
    • Journal of Radiation Protection and Research
    • /
    • v.7 no.1
    • /
    • pp.49-55
    • /
    • 1982
  • Thermally stimulated currents of polymers have some properties as radiation dosimetry, especially polymer could be made as a good dosimeter in biological fields because of tissue equivalent material. We experimented the radiation response of polymers and attempted to apply it in clinical use. Polymers have the properties of thermoluminescence and thermally stimulated currents which are due to several kinds of charged particles such as dipoles, electronic trapped charges and mobile ions. Several peaks are datected in the thermally stimulated currents in polyethylene under vias field V, by heating from room temperature to $100^{\circ}C$ shortly after irradiation. As V increases, both the peak temperature $T_m$ and the activation energy H decreases, while the peak current $I_m$ increases. We plotted the $T_m-V\;and\;I_m-V$ curves and calculated the electron trap depth with the recombination operative TSC theory and compared the peak TSC with radiation doses.

  • PDF

A Study on Reduction of Radiation Exposure by Nuclear Medicine Radiation Workers (핵의학 방사선 작업종사자 피폭 감소 방안에 대한 연구)

  • Lee, Wanghui;Ahn, Sungmin
    • Journal of the Korean Society of Radiology
    • /
    • v.13 no.2
    • /
    • pp.271-281
    • /
    • 2019
  • This study investigated the shielding efficiency of various types of shielding materials and measured the dose by organ using the phantom. Results of Shielding Efficiency Measurement Using Personal Radiation Meter. Among the various shielding materials, 1.1 mm RNS-TX composed of nano tungsten showed the highest shielding efficiency and 0.2 mm lead shielding showed the lowest shielding efficiency. 99mTc 30 mCi was exposed to the phantom for 120 minutes and the result of the measurement of the organs. 20.53 mSv without radiation protective clothing, 8.75 mSv when wearing 0.25 mm Pb protective clothing, 6.03 mSv when wearing 0.5 mm Pb protective clothing. 131I 2 mCi mCi was exposed to the phantom for 120 minutes and the result of the measurement of the organs. 7.71 mSv without radiation protective clothing, 4.88 mSv when wearing 0.25 mm Pb protective clothing, 2.79 mSv when wearing 0.5 mm Pb protective clothing. 18F 5 mCi was exposed to the phantom for 120 minutes and the result of the measurement of the organs. 16.39 mSv without radiation protective clothing, 15.84 mSv when wearing 0.25 mm Pb protective clothing, 12.52 mSv when wearing 0.5 mm Pb protective clothing. None of the radiation workers working in the nuclear medicine department exceeded the dose limit. However, when compared with other workers in the hospital, they showed a relatively high dose. Therefore, it is necessary to prepare measures to reduce and manage the dose of radiation workers in the nuclear medicine department through the wearing of radiation protective clothing made of lightweight, shielding material with good shielding efficiency, circulation task, task sharing, and substitution equipment such as auto dispenser.

Shielding for Critical Organs and Radiation Exposure Dose Distribution in Patients with High Energy Radiotherapy (고 에너지 방사선치료에서 환자의 피폭선량 분포와 생식선의 차폐)

  • Chu, Sung-Sil;Suh, Chang-Ok;Kim, Gwi-Eon
    • Journal of Radiation Protection and Research
    • /
    • v.27 no.1
    • /
    • pp.1-10
    • /
    • 2002
  • High energy photon beams from medical linear accelerators produce large scattered radiation by various components of the treatment head, collimator and walls or objects in the treatment room including the patient. These scattered radiation do not provide therapeutic dose and are considered a hazard from the radiation safety perspective. Scattered dose of therapeutic high energy radiation beams are contributed significant unwanted dose to the patient. ICRP take the position that a dose of 500mGy may cause abortion at any stage of pregnancy and that radiation detriment to the fetus includes risk of mental retardation with a possible threshold in the dose response relationship around 100 mGy for the gestational period. The ICRP principle of as low as reasonably achievable (ALARA) was recommended for protection of occupation upon the linear no-threshold dose response hypothesis for cancer induction. We suggest this ALARA principle be applied to the fetus and testicle in therapeutic treatment. Radiation dose outside a photon treatment filed is mostly due to scattered photons. This scattered dose is a function of the distance from the beam edge, treatment geometry, primary photon energy, and depth in the patient. The need for effective shielding of the fetus and testicle is reinforced when young patients ate treated with external beam radiation therapy and then shielding designed to reduce the scattered photon dose to normal organs have to considered. Irradiation was performed in phantom using high energy photon beams produced by a Varian 2100C/D medical linear accelerator (Varian Oncology Systems, Palo Alto, CA) located at the Yonsei Cancer Center. The composite phantom used was comprised of a commercially available anthropomorphic Rando phantom (Phantom Laboratory Inc., Salem, YN) and a rectangular solid polystyrene phantom of dimensions $30cm{\times}30cm{\times}20cm$. the anthropomorphic Rando phantom represents an average man made from tissue equivalent materials that is transected into transverse 36 slices of 2.5cm thickness. Photon dose was measured using a Capintec PR-06C ionization chamber with Capintec 192 electrometer (Capintec Inc., Ramsey, NJ), TLD( VICTOREEN 5000. LiF) and film dosimetry V-Omat, Kodak). In case of fetus, the dosimeter was placed at a depth of loom in this phantom at 100cm source to axis distance and located centrally 15cm from the inferior edge of the $30cm{\times}30cm^2$ x-ray beam irradiating the Rando phantom chest wall. A acryl bridge of size $40cm{\times}40cm^2$ and a clear space of about 20 cm was fabricated and placed on top of the rectangular polystyrene phantom representing the abdomen of the patient. The leaf pot for testicle shielding was made as various shape, sizes, thickness and supporting stand. The scattered photon with and without shielding were measured at the representative position of the fetus and testicle. Measurement of radiation scattered dose outside fields and critical organs, like fetus position and testicle region, from chest or pelvic irradiation by large fie]d of high energy radiation beam was performed using an ionization chamber and film dosimetry. The scattered doses outside field were measured 5 - 10% of maximum doses in fields and exponentially decrease from field margins. The scattered photon dose received the fetus and testicle from thorax field irradiation was measured about 1 mGy/Gy of photon treatment dose. Shielding construction to reduce this scattered dose was investigated using lead sheet and blocks. Lead pot shield for testicle reduced the scatter dose under 10 mGy when photon beam of 60 Gy was irradiated in abdomen region. The scattered photon dose is reduced when the lead shield was used while the no significant reduction of scattered photon dose was observed and 2-3 mm lead sheets refuted the skin dose under 80% and almost electron contamination. The results indicate that it was possible to improve shielding to reduce scattered photon for fetus and testicle when a young patients were treated with a high energy photon beam.

Quality Control of Dose Calibrator using 3D Printery (3D 프린터를 이용한 Dose Calibrator의 품질관리)

  • Ryu, Chan-Ju
    • Journal of the Korean Society of Radiology
    • /
    • v.15 no.3
    • /
    • pp.307-312
    • /
    • 2021
  • In nuclear medicine, radioactive isotope tracers are administered to the human body to obtain and evaluate disease morphological information and biological function information. Dose calibrator is a device used to measure the radioactivity of a single nuclide in medical institutions. Administration of the correct dose to the human body acts as an important factor in diagnosis and treatment, and measurement through a dose calibrator before administration is the most important factor. Dose calibrator performs daily quality control after installation in each medical institution. Quality control is a means of guaranteeing quality control after installation, and is essential for improving the quality of treatment and promoting patient safety. Therefore, accurate and standardized performance evaluation methods should be established. In this study, 3D printing was used for quantitative evaluation of quality control by increasing the accuracy and standardization of quality control. When the 3D printer was installed and reproducibility was tested, the error range of the expected value and reading value decreased by 0.302% in the F-18 nuclide and 0.09% in the 99mTc-pertechnate nuclide than when the 3D printer was installed. The error rate for other nuclides was also found to have a low error rate for reproducibility tests when 3D printing was installed.

A Study on the Surface Contamination Level and Spatial Dose Rate Measured from NM Patients-Only Bathroom (핵의학과 전용화장실에서 측정된 표면오염도 및 공간선량율에 대한 연구)

  • Moon, Jae-Seung;Jeong, Hyi-Il;Jeong, Hae-Seong;Sin, Min-Yong;Kim, Su-Geun;Park, Dae-Seong;Kim, Hyun-Ki;Kim, Hwa-San;Lee, Hyung-Nam;Ahn, Byeong-Pil;Lee, Dong-Ho
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.16 no.1
    • /
    • pp.38-43
    • /
    • 2012
  • Purpose: Patients injected with FDG use the bathroom that Measured surface contamination level and spatial dose rate. This study about the effect that result affects workers in same part. Materials and Methods: Group1 is St. Vincent' s hospital's 60case. Group 2 is Bucheon St. Mary's hospital's 50case. Last case is lower the average daily number of patients than group 2. Measured time is 8:00, 10:00, 13:00, 15:00 and 17:00. Measured part is 4 point of toilet, basin and wastepaper basket, also measured accumulation dose of toilet during 3 month. Hospitals is installed PET/CT ware surveyed on presence of bathroom that used only by patient and worker has been using the bathroom. Results: The highest average surface contamination level of toilet is group1($8.38{\pm}4.56$), but the highest spatial dose rate is group3. Cumulative exposure dose measured by TLD during 3months is St.Vincent's hospital 0.78 mSv and Bucheon St.Mary's hospital 0.37 mSv. And result of survey is 16.12% worker using the bathroom. Conclusions: The more daily number of patient, the higher surface contamination level of bathroom. Especially, wastepaper basket's surface contamination level is exceed the reference value $4Bq/cm^2$. Based on This survey, Bathroom require special attention and proper decontamination.

  • PDF

Structural Safety Test and Analysis of Type IP-2 Transport Packages with Bolted Lid Type and Thick Steel Plate for Radioactive Waste Drums in a NPP (원자력발전소의 방사성폐기물 드럼 운반을 위한 볼트체결방식의 두꺼운 철판을 이용한 IP-2형 운반용기의 구조 안전성 해석 및 시험)

  • Lee, Sang-Jin;Kim, Dong-hak;Lee, Kyung-Ho;Kim, Jeong-Mook;Seo, Ki-Seog
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.5 no.3
    • /
    • pp.199-212
    • /
    • 2007
  • If a type IP-2 transport package were to be subjected to a free drop test and a penetration test under the normal conditions of transport, it should prevent a loss or dispersal of the radioactive contents and a more than 20% increase in the maximum radiation level at any external surface of the package. In this paper, we suggested the analytic method to evaluate the structural safety of a type IP-2 transport package using a thick steel plate for a structure part and a bolt for tying a bolt. Using an analysis a loss or dispersal of the radioactive contents and a loss of shielding integrity were confirmed for two kinds of type IP-2 transport packages to transport radioactive waste drums from a waste facility to a temporary storage site in a nuclear power plant. Under the free drop condition the maximum average stress at the bolts and the maximum opening displacement of a lid were compared with the tensile stress of a bolt and the steps in a lid, which were made to avoid a streaming radiation in the shielding path, to evaluate a loss or dispersal of radioactive waste contents. Also a loss of shielding integrity was evaluated using the maximum decrease in a shielding thickness. To verify the impact dynamic analysis for free drop test condition and evaluate experimentally the safety of two kinds of type IP-2 transport packages, free drop tests were conducted with various drop directions. For the tests we examined the failure of bolts and the deformation of flange to evaluate a loss or dispersal of radioactive material and measured the shielding thickness using a ultrasonic thickness gauge to assess a loss of shielding integrity. The strains and accelerations acquired from tests were compared with those by analyses to verify the impact dynamic analysis. The analytic results were larger than the those of test so that the analysis showed the conservative results. Finally, we evaluated the safety of the type IP-2 transport package under the stacking test condition using a finite element analysis. Under the stacking test condition, the maximum Tresca stress of the shielding material was 1/3 of the yielding stress. Two kinds of a type IP-2 transport package were safe for the free drop test condition and the stacking test condition.

  • PDF

Effect of Trace Elements in Alcohol Beverages on the Type of Radiation-induced Cell Death (인체 임파구세포에서 X-선 조사에 의한 세포사의 형태에 주정성분이 미치는 영향)

  • Sohn, Jong-Gi
    • Journal of Radiation Protection and Research
    • /
    • v.35 no.2
    • /
    • pp.49-56
    • /
    • 2010
  • Developments of radioprotective agents are important issues for minimizing the troubles and the effective treatments in radiotherapy. But few agents are useful in clinical and practical fields. It was shown that trace elements in alcohol beverages might have radioprotective effect. In this study, the types of cell death of lymphocytes according to the commercial alcohol beverage was investigated. Normal healthy volunteers ingested distilled water, beer or soju containing $81.5mg{\cdot}dl^{-1}$ ethyl ahcohol, respectively. After 2 hours, their blood were sampled with their consents. Fraction of lymphocytes was isolated by density gradient method with Histopaque-1077 (Sigma) and irradiated with dose from 0.5 to 5 Gy. After 60 hour incubation, the cells were harvested and analysed by flow cytometry. Cell viability was decreased by dose dependent manner. Cell viability of beer group was reduced about 15% compared with control group. Apoptosis in soju group was reduced about 20% compared with control group. Apoptosis of beer and control groups are similar. Necrosis of soju group significantly increased about 35% compared with control group. Early apoptosis of beer group was increased compared with control group. Early apoptosis of soju group was decreased about 25% compared with control group. Late apoptosis of beer and control group was increased by dose dependent manner. Late apoptosis of soju group was increased about 20-30% compared with control group. Late apoptosis of soju was increased and the radioprotective effect of soju was minimal because late apoptosis induced the cell necrosis. In case of soju trace elements, total cell apoptosis was decreased about 20% and early cell apoptosis was remarkably low. In this case, mitotic cells death may be dominant mechanism. Therefore, trace elements in soju may not be effective radioprotective agents.