• Title/Summary/Keyword: 방사선량 측정기

Search Result 38, Processing Time 0.033 seconds

Transmission Dose Estimation Algorithm for Irregularly Shaped Radiation Field (부정형 방사선 조사면에 대한 투과선량 보정 알고리즘)

  • Yun Hyong Geun;Chie Eui Kyu;Huh Soon Nyung;Wu Hong Gyun;Lee Hyoung Koo;Shin Kyo Chul;Kim Siyong;Ha Sung Whan
    • Radiation Oncology Journal
    • /
    • v.20 no.3
    • /
    • pp.274-282
    • /
    • 2002
  • Purpose : Measurement of transmission dose is useful for in vivo dosimetry. In this study, the algorithm for estimating the transmission dose for open radiation fields was modified for application to partially blocked radiation fields. Materials and Methods : The beam data was measured with a flat solid phantom with various blocked fields. A new correction algorithm for partially blocked radiation field was developed from the measured data. This algorithm was tested in some settings simulating clinical treatment with an irregular field shape. Results : The correction algorithm for the beam block could accurately reflect the effect of the beam block, with an error within ${\pm}1.0\%$, with both square fields and irregularly shaped fields. Conclusion : This algorithm can accurately estimate the transmission dose in most radiation treatment settings, including irregularly shaped field.

A study on dose attenuation in bone density when TBI using diode detector and TLD (전신방사선조사(TBI)시 다이오드 측정기(Diode detector) 및 열형광선량계(TLD)를 이용한 골조직 선량감쇄에 대한 고찰)

  • IM Hyun Sil;Lee Jung Jin;Jang Ahn Ki;Kim Wan Seon
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.15 no.1
    • /
    • pp.67-77
    • /
    • 2003
  • I. Purpose Uniform dose distribution of the whole body is essential factor for the total body irradiation(TBI). In order to achieved this goal, we used to compensation filter to compensate body contour irregularity and thickness differences. But we can not compensate components of body, namely lung or bone. The purpose of this study is evaluation of dose attenuation in bone tissue when TBI using diode detectors and TLD system. II. Materials and Methods The object of this study were 5 patients who undergo TBI at our hospital. Dosimetry system were diode detectors and TLD system. Treatment method was bilateral and delivered 10MV X-ray from linear accelerator. Measurement points were head, neck, pelvis, knees and ankles. TLD used two patients and diode detectors used three patients. III. Results Results are as followed. All measured dose value were normalized skin dose. TLD dosimetry : Measured skin dose of head, neck, pelvis, knees and ankles were $92.78{\pm}3.3,\;104.34{\pm}2.3,\;98.03{\pm}1.4,\;99.9{\pm}2.53,\;98.17{\pm}0.56$ respectably. Measured mid-depth dose of pelvis, knees and ankles were $86{\pm}1.82,\;93.24{\pm}2.53,\;91.50{\pm}2.84$ respectably. There were $6.67\%{\sim}11.65\%$ dose attenuation at mid-depth in pelvis, knees and ankles. Diode detector : Measured skin dose of head, neck, pelvis, knees and ankles were $95.23{\pm}1.18,\;98.33{\pm}0.6,\;93.5{\pm}1.5,\;87.3{\pm}1.5,\;86.90{\pm}1.16$ respectably. There were $4.53\%{\sim}12.6\%$ dose attenuation at mid-depth in pelvis, knees and ankles. IV. Conclusion We concluded that dose measurement with TLD or diode detector was inevitable when TBI treatment. Considered dose attenuation in bone tissue, We must have adequately deduction of compensator thickness that body portion involved bone tissue.

  • PDF

The implementation of a Gd-pMOSFET thermal neutron detector and the enhancement of its sensitivity (Gd-pMOSFET 열중성자 측정기 구현 및 감도개선)

  • Lee, Nam-Ho;Kim, Seung-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2005.10b
    • /
    • pp.430-432
    • /
    • 2005
  • 저에너지 중성자가 가톨리늄(Gd) 막에 입사되면 중성자 포획과정에서 전환전자가 생성된다. 이 전환전자에 의해 pMOSFET $SiO_2$ 산화층에서 발생된 전자-전공쌍이 발생되고, 이 가운데 정공은 산화층 내부에 쉽게 붙잡혀(Trap) 양전하 센터로 작용하게 된다. 이 축적된 전하는 pMOSFET의 문턱전압(Threshold voltage)을 변화시킨다. 본 연구에서는 이러한 간접측정 원리를 이용하여 열중성자를 실기간 탐지할 수 있는 반도체형 탐지소자를 개발하고 하나로(HANARO) 방사선장에서의 시험을 통해 성능을 검증하였다. 그리고 감도관련 변수의 최적화를 통하여 작업자가 사용 가능한 범위의 고감도 열중성자 선량계로 개선 제작하였다. 개발된 선량계는 소형으로 실시간 열중성자 측정이 가능하며 감마방사선으로부터 독립적으로 열중성자를 측정할 수 있는 장점도 지니고 있다.

  • PDF

Calculation Method of Entrance Skin Dose in X-ray Beam Quality Factor (선질계수에 의한 피부입사선량 계산법)

  • Kim, Sung-Chul;Kim, Chong-Yeal;Ahn, Sung-Min
    • The Journal of the Korea Contents Association
    • /
    • v.10 no.2
    • /
    • pp.258-267
    • /
    • 2010
  • This interest in radiation exposure makes increasing doctor's awareness and knowledge of radiation dose in patients during X-ray test important in reducing patient's uneasiness. However, very few facilities are equipped with measurement instruments. Therefore, an intensive study to find out patient dose using computational method has been initiated. This study used special features of the bit system and NDD-M and directly measured the output dose of diagnostic X-ray instruments used in Korea to create tables. Two different methods were found to be adequate when applied to cases when X-ray outputs were both known and unknown, and comparative experiments with real measurement doses were carried out. Presented methods were found to provide more accurate results compared to the bit system and NDD-M. Therefore, patient dose during clinical trials were found to be more easily acceptable to medical personnel in the radiation field in terms of radiation exposure and reduction of medical X ray dose.

A Study on Characteristic of Glass Dosimeter According to Graded Change of Tube Current (유리선량계의 단계별 관전류량 변화에 따른 특성연구)

  • Son, Jin-Hyun;Kim, Seong-Ho;Mun, Hyun-Jun;Kim, Lyun-Kyun;Son, In-Hwa;Kim, Young-Jun;Min, Jung-Whan;Kim, Ki-Won
    • Journal of radiological science and technology
    • /
    • v.37 no.2
    • /
    • pp.135-141
    • /
    • 2014
  • This study was evaluated the linearity and reproducibility according to dose, and reproducibility according to delay time by changing tube current amount (5 mAs, 10 mAs, 16 mAs, 20 mAs, 25 mAs, 32 mAs respectively, which are low energy radiations) using Glass Dosimeter (GD) and piranha semiconductor dosimeter which are used for measuring exposure dose. Measurements of radiation dose were performed using external detector of piranha 657 which is multi-function QA device (RTI Electronic, Sweden). Conditions of measurement were 80 kVp, SSD 100 cm and exposure region is $10cm{\times}10cm$. Glass dosimeter was exposed to radiation. Twenty-four glass dosimeters were divided into six groups (5 mAs, 10 mAs, 16 mAs, 20 mAs, 25 mAs, 32 mAs respectively), then measured. This study was resulted by measuring the linearity and reproducibility according to change of tube current in low energy field. In dose characteristic of GD, this study could be useful as previous study with regard to dose characteristic according to change of tube voltage in low energy field.

Correlation of Effective Dose and BMI in Radioiodine($^{131}I$) Therapy (방사성옥소($^{131}I$) 치료 시 유효선량과 체질량지수의 상관관계)

  • Shin, Gyoo-Seul;Kim, Gun-Jae;Dong, Kyung-Rae;Kim, Hyun-Soo
    • Journal of radiological science and technology
    • /
    • v.31 no.1
    • /
    • pp.11-16
    • /
    • 2008
  • Purpose : The aim of this study was to predict radiation dose at 1 meter with BMI(body mass index) in thyroid cancer patients treated with radio-iodine and provide the efficient guideline in the management of patients. Methods : 140 patients from thyroidectomy for thyroid cancer were enrolled. All subjects under went 150 mCi radio-iodine therapy and performed whole body scan 1 week later. BMI(weight divided by square of height) was calculated to evaluate the amount of fatty tissue indirectly. The radiation dose at 1 meter was measured initially and on 2nd days. the relation of values with BMI were analyzed statically. As for the method of statistical analysis, using Med calc Version 9,2,2,0 Program. Results : (1) The initial effective dose was inversely correlated with the BMI. Significance level was 0.0004. (2) We obtained the following formula from the data of initial effective dose and BMI: Y = -30.91X + 350.4(${\mu}Sv/h$)(Y: initial radiation dose, x: Group). (3) After 21.55 hours, than radiation dose was less than those recommended by ICRP or NRC in 53% of the population. Conclusion : Using BMI, the initial radiation dose and 2nd days dose can be predicted in thyroid cancer patients before radio-iodine therapy. It may be used for predicting the time of discharge and control the isolation room. We were able to predict the radiation exposure after discharge using this calculated value.

  • PDF

Selective Beam Shielding Method of Gamma-Knife Unit Using Various Plugging Patterns (다양한 Plugging 형태를 이용한 감마나이프의 선택적 빔 차폐 방법)

  • Jang Geon Ho;Lim Young Jin;Shin Dong Oh;Choi Doo Ho;Hong Seong Eon;Leem Won
    • Radiation Oncology Journal
    • /
    • v.11 no.2
    • /
    • pp.439-448
    • /
    • 1993
  • The B-type gamma knife unit was installed at Kyung-Hee University Hospital in March 1992. The selective beam plugging method can be used to reduce the low percentage isodose profiles of normal sensitive organ and to modify the isodose curves of treatment volume for better shaping of the target volume. For representing the changes of the low percentage isodose profiles, the variations of dose distribution for several cases were discussed in this paper. The film dosimetry was peformed for the evaluation of calculated isodose profiles predicted by KULA dose planning system. The results were verified by RFA-3 automatic densitometry. The clinical application of selective beam shielding method was peformed in 17 patients in 100 patients who have undergone gamma knife radiosurgery for a year. The calculated and the measured isodose profiles for the high percentage regions were well consistent with each other. When the target of pituitary tumor is macro-size, the selective beam shielding method is the most applicable method. When the target size, however, is small, the correct selection of the proper helmet size is very important. All patients were exposed almost about 3~12 Gy for brain stem, and 3~11.2 Gy for optic apparatus. It is recommended that the same or other plugging patterns with multiple isocenters should be used for protection of the radiosensitive normal structures with precise treatment of CNS lesions.

  • PDF

Standard Neutron Irradiation Facility for Calibration of Radiation Protection Instruments by Radioactive Neutron Sources (방사성 중성자선원에 의한 방사선방어측정기의 교정을 위한 표준 중성자 조사장치 연구)

  • Choi, Kil-Oung;Lee, Kyung-Ju;Hwang, Sun-Tae
    • Journal of Radiation Protection and Research
    • /
    • v.14 no.1
    • /
    • pp.66-70
    • /
    • 1989
  • In routine testing, the radioactive neutron sources are particularly suitable for producing standard. neutron fields. The ISO TC-85 has proposed neutron reference radiation for the calibration of neutron measuring devices used for radiation protection purposes. Radiation laboratory of KSRI has installed a standard irradiation facility using $^{252}Cf$ and $^{241}Am-Be$ sources for calibrating personal dosimeters according to the recommendations given in ISO TC-85. In this study, correction factors for calibration related to neutron scattering and anisotropy are obtained by experiments with commercial rem meter for demonstration purposes.

  • PDF

The Study of Radiation Reducing Method during Injection Radiopharmaceuticals (방사성의약품 투여 시 피폭선량 저감에 대한 연구)

  • Cho, Seok-Won;Jung, Seok;Park, June-Young;Oh, Shin-Hyun;NamKoong, Hyuk;Oh, Ki-Beak;Kim, Jae-Sam;Lee, Chang-Ho
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.16 no.1
    • /
    • pp.80-85
    • /
    • 2012
  • Purpose: The whole body bone scan is an examination that visualizing physiological change of bones and using bone-congenial radiopharmaceutical. The patients are intravenous injected radiopharmaceutical which labeled with radioactive isotope ($^{99m}Tc$) emitting 140 keV gammarays and scanned after injection. The 3 principles of radiation protection from external exposureare time, distance and shielding. On the 3 principles of radiation protection basis, radiopharmaceutical might just as well be injected rapidly for reducing radiation because it might be the unopened radiation source. However the radiopharmaceuticals are injected into patient directly and there is a limitation of distance control. This study confirmed the change of radiation exposure as change of distance from radiopharmaceutical and observed the change of radiation exposure afte rsetting a shelter for help to control radio-technician's exposure. Materials & methods: For calculate the average of injection time, the trained injector measured the injection time for 50 times and calculated the average (2 minutes). We made a source as filled the 99mTc-HDP 925 MBq 0.2 mL in a 1 mL syringe and measured the radiation exposure from 50 cm,100 cm,150 cm and 200 cm by using Geiger-Mueller counter (FH-40, Thermo Scientific, USA). Then we settled a lead shielding (lead equivalent 6 mm) from the source 25 cm distance and measured the radiation exposure from 50 cm distance. For verify the reproducibility, the measurement was done among 20 times. The correlation between before and after shielding was verified by using SPSS (ver. 18) as paired t-test. Results: The radiation doses according to distance during 2 minutes from the source without shielding were $1.986{\pm}0.052{\mu}$ Sv in 50 cm, $0.515{\pm}0.022{\mu}$ Sv in 100 cm, $0.251{\pm}0.012{\mu}$ Sv in 150 cm, $0.148{\pm}0.006{\mu}$ Sv in 200 cm. After setting the shielding, the radiation dose was $0.035{\pm}0.003{\mu}$ Sv. Therefore, there was a statistical significant difference between the radiation doses with shielding and without shielding ($p$<0.001). Conclusion: Because the great importance of whole body bone scan in the nuclear medicine, we should make an effort to reduce radiation exposure during radiopharmaceutical injections by referring the principles of radiation protection from external exposure. However there is a limitation of distance for direct injection and time for patients having attenuated tubules. We confirmed the reduction of radiation exposure by increasing distance. In case of setting shield from source 25 cm away, we confirmed reducing of radiation exposure. Therefore it would be better for reducing of radiation exposure to using shield during radiopharmaceutical injection.

  • PDF

Study of External Radiation Expose Dose on Hands of Nuclear Medicine Workers (핵의학 종사자에서 손 부위의 외부 피폭선량 연구)

  • Park, Jun-Chul;Pyo, Sung-Jae
    • Journal of radiological science and technology
    • /
    • v.35 no.2
    • /
    • pp.141-149
    • /
    • 2012
  • The aims of this study are to assess external radiation exposed doses of body and hands of nuclear medicine workers who handle radiation sources, and to measure radiation exposed doses of the hands induced by a whole body bone scan with high frequency and handling a radioactive sources like $^{99m}Tc$-HDP and $^{18}F$-FDG in the PET/CT examination. Skillful workers, who directly dispense and inject from radiation sources, were asked to wear a TLD on the chest and ring finger. Then, radiation exposed dose and duration exposed from daily radiation sources for each section were measured by using a pocket dosimeter for the accumulated external doses and the absorbed dose to the hands. In the survey of four medical institutions in Incheon Metropolitan City, only one of four institutions has a radiation dosimeter for local area like hands. Most of institutions uses radiation shielding devices for the purpose of protecting the body trunk, not local area. Even some institutions were revealed not to use such a shielding device. The exposed doses on the hands of nuclear medicine workers who directly handles radioactive sources were approximately twice as much as those on the body. The radiation exposure level for each section of the whole body bone scan with high frequency and that of the PET/CT examination showed that radiation doses were revealed in decreasing order of synthesis of radioactive medicine and installation to a dispensing container, dispensing, administering and transferring. Furthermore, there were statistically significant differences of radiation exposure doses of the hands before and after wearing a syringe shielder in administration of a radioactive sources. In this study, although it did not reach the permissible effective dose for nuclear medicine, the occupational workers were exposed by relatively higher dose level than the non-occupational workers. Therefore, the workers, who closely exposed to radioactive sources should be in compliance with safety management regulations, and take actions to maximally reduce locally exposed dose to hands monitoring with ring TLD.