• Title/Summary/Keyword: 방사선검출기

Search Result 569, Processing Time 0.025 seconds

Development of the IRIS Collimator for the Portable Radiation Detector and Its Performance Evaluation Using the MCNP Code (IRIS형 방사선검출기 콜리메이터 제작 및 MCNP 코드를 이용한 성능평가)

  • Ji, Young-Yong;Chung, Kun Ho;Lee, Wanno;Choi, Sang-Do;Kim, Change-Jong;Kang, Mun Ja;Park, Sang Tae
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.13 no.1
    • /
    • pp.55-61
    • /
    • 2015
  • When a radiation detector is applied to the measurement of the radioactivity of high-level of radioactive materials or the rapid response to the nuclear accident, several collimators with the different inner radii should be prepared according to the level of dose rate. This makes the in-situ measurement impractical, because of the heavy weight of the collimator. In this study, an IRIS collimator was developed so as to have a function of controlling the inner radius, with the same method used in optical camera, to vary the attenuation ratio of radiation. The shutter was made to have the double tungsten layers with different phase angles to prevent the radiation from penetrating owing to the mechanical tolerance. The performance evaluation through the MCNP code was conducted by calculating the attenuation ratio according to the inner radius of the collimator. The attenuation ratio was marked on the outer scale ring of the collimator. It is expected that when a radiation detector with the IRIS collimator is used for the in-situ measurement, it can change the attenuation ratio of the incident photon to the detector without replacing the collimator.

Development of Unmanned Remote Radiation Detection Module (무인 원격 방사선 검출 모듈 개발)

  • Chang, Bo-Seok
    • Journal of the Korean Society of Radiology
    • /
    • v.15 no.6
    • /
    • pp.795-801
    • /
    • 2021
  • The designed drone-based unmanned remote radiation detection module was developed according to the needs of the nuclear power plant decommissioning workshop. Using the Geiger-Mueller tube sensitive to low-level radiation measurement, It was manufactured to measure the amount of radiation leaking into and out of the containment vessel. The drone-based radiation detection module weighs less than 200g, It can be operated inside and outside the containment vessel of a nuclear power plant. To check the performance of the designed equipment, a performance evaluation test was conducted with reference to the international standard (IEC-60864). The stability of the radiation detection module designed to meet the needs of the field the statistical rate of change by repeated measurements in the rate of change experiment to evaluate the measurement accuracy was ±4.6%. The accuracy ±7.3% in the linearity experiment to evaluate the dose rate dependence, the linear The figure satisfies the international performance evaluation standard of ±3.5%. The radiation detection module developed in this study is a customized equipment for a nuclear power plant dismantling workshop. It will be helpful for accurate measurement of space dose rate and safety management of radiation worksites in sites with a lot of radiation dust.

A Study on Development of a PIN Semiconductor Detector for Measuring Individual Dose (개인 선량 측정용 PIN 반도체 검출기 개발에 관한 연구)

  • Lee, B.J.;Lee, W.N.;Khang, B.O.;Chang, S.Y.;Rho, S.R.;Chae, H.S.
    • Journal of Radiation Protection and Research
    • /
    • v.28 no.2
    • /
    • pp.87-95
    • /
    • 2003
  • The fabrication process and the structure of PIN semiconductor detectors have been designed optimally by simulation for doping concentration and width of p+ layer, impurities re-contribution due to annealing and the current distribution due to guard ring at the sliced edges. The characteristics to radiation response has been also simulated in terms of Monte Carlo Method. The device has been fabricated on n type, $400\;{\Omega}cm$, orientation <100>, Floating-Zone silicon wafer using the simulation results. The leakage current density of $0.7nA/cm^2/100{\mu}m$ is achieved by this process. The good linearity of radiation response to Cs-137 was kept within the exposure ranges between 5 mR/h and 25 R/h. This proposed process could be applied for fabricating a PIN semiconductor detector for measuring individual dose.

Image Acquisition Study of Maximal Scintillation Pixel Array using Light Guide (광가이드를 사용한 최대 섬광 픽셀 배열의 영상 획득 연구)

  • Lee, Seung-Jae
    • Journal of the Korean Society of Radiology
    • /
    • v.16 no.3
    • /
    • pp.249-255
    • /
    • 2022
  • Positron emission tomography for small animals has very high spatial resolution for imaging very small organs. To achieve good spatial resolution, the system must be constructed using very small scintillation pixels. When a detector is constructed using very small scintillation pixels, the size of the applicable array varies depending on the photosensor pixel. In a previous study, a study was conducted to find the maximum scintillation pixel arrangement according to the size of the photosensor. In this study, a detector with a light guide was designed to configure the detector using a more extended array of scintillation pixels, and try to find the maximum arrangement in which all scintillation pixels are imaged. The detector was designed using DETECT2000, which can simulate a detector made of a scintillator. Simulations were performed by configuring the detectors from an 11 × 11 scintillation pixel array to a 16 × 16 array. After obtaining a flood image by collecting the light generated from the scintillation pixel with a photosensor, the largest arrangement without overlap was found through image analysis. As a result, the largest arrangement in which all scintillation pixels could be distinguished without overlapping was a 15 × 15 arrangement.

Development of $14"{\times}8.5"$ active matrix flat-panel digital x-ray detector system and Imaging performance (평판 디지털 X-ray 검출기의 개발과 성능 평가에 관한 연구)

  • Park, Ji-Koon;Choi, Jang-Yong;Kang, Sang-Sik;Lee, Dong-Gil;Seok, Dae-Woo;Nam, Sang Hee
    • Journal of radiological science and technology
    • /
    • v.26 no.4
    • /
    • pp.39-46
    • /
    • 2003
  • Digital radiographic systems based on solid-state detectors, commonly referred to as flat-panel detectors, are gaining popularity in clinical practice. Large area, flat panel solid state detectors are being investigated for digital radiography. The purpose of this work was to evaluate the active matrix flat panel digital x-ray detectors in terms of their modulation transfer function (MTF), noise power spectrum (NPS), and detective quantum efficiency (DQE). In this paper, development and evaluation of a selenium-based flat-panel digital x-ray detector are described. The prototype detector has a pixel pitch of $139\;{\mu}m$ and a total active imaging area of $14{\times}8.5\;inch^2$, giving a total 3.9 million pixels. This detector include a x-ray imaging layer of amorphous selenium as a photoconductor which is evaporated in vacuum state on a TFT flat panel, to make signals in proportion to incident x-ray. The film thickness was about $500\;{\mu}m$. To evaluate the imaging performance of the digital radiography(DR) system developed in our group, sensitivity, linearity, the modulation transfer function(MTF), noise power spectrum (NPS) and detective quantum efficiency(DQE) of detector was measured. The measured sensitivity was $4.16{\times}10^6\;ehp/pixel{\cdot}mR$ at the bias field of $10\;V/{\mu}m$ : The beam condition was 41.9\;KeV. Measured MTF at 2.5\;lp/mm was 52%, and the DQE at 1.5\;lp/mm was 75%. And the excellent linearity was showed where the coefficient of determination ($r^2$) is 0.9693.

  • PDF