• Title/Summary/Keyword: 방류수질

Search Result 348, Processing Time 0.024 seconds

Assessing greenhouse gas footprint and emission pathways in Daecheong Reservoir (대청댐 저수지의 온실가스 발자국 및 배출 경로 평가)

  • Min, Kyeong Seo;Chung, Se Woong;Kim, Sung Jin;Kim, Dong Kyun
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.10
    • /
    • pp.785-799
    • /
    • 2022
  • The aim of this study was to characterize the emission pathways and the footprint of greenhouse gases (GHG) in Daecheong Reservoir using the G-res Tool, and to evaluate the GHG emission intensity (EI) compared to other energy sources. In addition, the change in GHG emissions was assessed in response to the total phosphorus (TP) concentration. The GHG flux in post-impoundment was found to be 262 gCO2eq/m2/yr, of which CO2 and CH4 were 45.7% and 54.2%, respectively. Diffusion of CO2 contributed the most, followed by diffusion, degassing, and bubbling of CH4. The net GHG flux increased to 510 gCO2eq/m2/yr because the forest (as CO2 sink) was lost after dam construction. The EI of Daecheong Reservoir was 86.8 gCO2eq/kWh, which is 3.7 times higher than the global EI of hydroelectric power, due to its low power density. However, it was remarkable to highlight the value to be 9.5 times less than that of coal, a fossil fuel. We also found that a decrease in TP concentration in the reservoir leads to a decrease in GHG emissions. The results can be used to improve understanding of the GHG emission characteristics and to reduce uncertainty of the national GHG inventory of dam reservoirs.

Optimum Management Plan of Swine Wastewater Treatment Plant for the Removal of High-concentration Nitrogen (고농도 질소제거를 위한 축산폐수 처리시설 적정관리 방안)

  • Shin, Nam-Cheol;Jung, Yoo-Jin;Sung, Nak-Chang
    • Korean Journal of Environmental Agriculture
    • /
    • v.19 no.3
    • /
    • pp.194-200
    • /
    • 2000
  • The amount of swine wastewater reaches about $197,000m^3$ per day at live-stock houses in the whole country. A half of the swine wastewater resources are too small to be restricted legally. This untreated wastewater causes the eutrophication in the water bodies. In case of swine wastewater treatment, the solid-liquid separation must be performed because feces(solid phase) and urine(liquid phase) have large differences in nitrogen and phosphorus concentration. It is necessary to assess exactly the concentration of the pollutants in swine wastewater for planning the wastewater treatment facilities. A full-scale operation was carried out in K city and the plant is consists of conventional plant, the supplementary flocculation basin of chemical treatment process and $anaerobic{\cdot}aerobic$ basin for nitrogen removal. The improved full-scale swine wastewater treatment plant removed the $1,500{\sim}3,000mg/l$ of total-nitrogen(T-N) to 120mg/l of T-N and $131{\sim}156mg/l$ of total-phosphorus(T-P) to $0.15{\sim}1.00mg/l$ of T-N. Accordingly, as a results of operational improvement, the removal efficiencies of T-N and T-P were over $92{\sim}96%$, 99%, respectively. The continuous supply of organic carbon sources and the state of pH played important roles for the harmonious metabolism in anaerobic basin and the pH value of anaerobic basin maintained at about 9.0 for the period of the study.

  • PDF

A Study on Process Optimization for CSOs Application of Horizontal Flow Filtration Technology (수평흐름식 여과기술의 CSOs 적용을 위한 공정 최적화 연구)

  • Kim, Jae-Hak;Yang, Jeong-Ha;Lee, Young-Shin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.2
    • /
    • pp.56-63
    • /
    • 2018
  • The management of Combined Sewer Overflows(CSOs) and Separated Sewer Overflows(SSOs) discharge directly to the effluent system in an untreated state, which occurs when the facility capacity is exceeded due to heavy rain, has become an important issue in recent years as the heavy rain becomes a regular phenomenon. Despite the continuous development of filtration technology, targeting densely populated urban areas, CSOs are rarely applied. Therefore, this study was carried out to optimize the process to apply CSOs in a pilot-scale horizontal flow filtration system with a rope-type synthetic fiber. The research was carried out in two steps: a preliminary study using artificial samples and a field study using sewage. In the preliminary study using an artificial sample, head loss of the filter media itself was analyzed to be approximately 1.1cm, and the head loss was increased by approximately 0.1cm as the linear velocity was increased by 10m/hr. In addition, the SS removal efficiency was stable at 81.4%, the filtration duration was maintained for more than 6 hours, and the average recovery rate of 98% was obtained by air backwashing only. In the on-site evaluation using sewage, the filtration duration was approximately 2 hours and the average removal efficiency of 83.9% was obtained when belt screen (over 450 mesh) was applied as a pre-treatment process to prevent the premature clogging of filter media. To apply the filtration process to CSOs and SSOs, it was concluded that the combination with the pre-treatment process was important to reinforce the hydraulic dimension for the stable maintain of operation period, rather than efficiency. Compared to the dry season, the quality of incoming sewage was lower in the rainy season, which was attributed to the characteristics of the drainage area with higher sanitary sewerage. In addition, the difference in removal efficiency according to the influent quality of the wet season and dry season was small.

Biogeochemical Study of Dissolved Organic and Inorganic Compounds under Oxic/Anoxic Environment in Lake Shihwa (시화호 산화-환원 환경하의 용존 유, 무기 화합물의 생지화학적 연구)

  • Park, Yong-Chul;Park, Jun-Kun;Han, Myong-Woo;Son, Seung-Kyu;Kim, Moon-Koo;Huh, Seong-Hoi
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.2 no.2
    • /
    • pp.53-68
    • /
    • 1997
  • Lake Shihwa, artificially constructed since 1988, shows a typical two-layered system depending on strong haline density stratification. Sill of the water gate at 6 m depth greatly restricts physical mixing with outer seawater and circulation in the lake, and contributes to the enhancement of anoxic environment in the deeper layer. With this enclosed physical environment, Lake Shihwa receives enormous amounts of organics, ammonia, and other pollutants from the neighboring municipal and industrial complexes through six major streams, thus developing biogeochemical differentiation of anoxic to suboxic environment in the high saline bottom water and highly eutrophicated brackish surface water. This study investigated vertical structures, biogeochemical behaviors and processes of various organic and inorganic compounds around oxic-anoxic interface. Nitrite and nitrate rapidly decreased below the pycnocline where about $1{\times}10^8$ tons of hypoxic bottom water exist. In this bottom layer, ammonium ranged from 75 to 360 ${\mu}M$ mainly resulting from deamination of dissolved organic nitrogen and ammonification of precipitated organic particles. Despite large amounts of surface water discharge and dilution by outer seawater inflow about $3{\times}10^8$ tons from April to August, 1996, bottom layer did not show any improvement of water quality and maintained highly reduced environment. The main reason seems to be imbalance between ineffectiveness of dilution due to shallow depth and large surface area, overloaded POC influx from the eutrophicated surface biological activity, and poor replenishment of oxygen in this artificial lake system. Therefore, as long as current salinity dependent two-layered system maintains with its physical limitations, any improvement of water quality cannot be foreseen in Lake Shihwa.

  • PDF

Characteristics of Manure and Estimation of Nutrient and Pollutant of Holstein Dairy Cattle (홀스타인 젖소 분뇨의 특성과 비료성분 및 오염물질 부하량 추정)

  • Choi, D.Y.;Choi, H.L.;Kwag, J.H.;Kim, J.H.;Choi, H.C.;Kwon, D.J.;Kang, H.S.;Yang, C.B.;Ahn, H.K.
    • Journal of Animal Science and Technology
    • /
    • v.49 no.1
    • /
    • pp.137-146
    • /
    • 2007
  • This study was conducted to determine fertilizer nutrient and pollutant production of Holstein dairy cattle by estimating manure characteristics. The moisture content of feces was 83.9% and 95.1% for urine. The pH of feces and urine were in the ranges of 7.0~7.4 and 7.5~7.8, respectively. The average BOD5, COD, SS, T-N, T-P concentrations of the dairy feces were 18,294, 52,765, 102,889, 2,575, and 457mg/ℓ, respectively. Dairy urine showed lower levels of BOD5(5,455mg/ℓ), COD(8,089mg/ℓ), SS(593mg/ℓ), T-N(3,401mg/l), and T-P(13mg/ℓ) than feces. The total daily produced pollutant amounts of a dairy cow were 924.1g(Milking cow), 538.8g(Dry cow), 284.4g(Heifer) of BOD5, 2,336.5g (Milking cow), 1,651.8g(Dry cow), 734.1g(Heifer) of COD and 4,210.1g(Milking cow), 2,417.1g(Dry cow), 1,629.1g(Heifer) of SS and 194.8g(Milking cow), 96.4g(Dry cow), 58.3g(Heifer) of T-N and 24.0g(Milking cow), 10.2g(Dry cow), 6.1g(Heifer) of T-P. The calculated amount of pollutants produced by a 450kg dairy cow for one year were 181.3kg of BOD5, 492.5kg of COD, 899.9kg of SS, 36.0kg of T-N and 4.1kg of T-P. The total yearly estimated pollutant production from all head(497,261) of dairy cattle in Korea is 90,149 tons of BOD5, 244,890 tons of COD, 447,491 tons of SS, 17,898 tons of T-N and 2,008 tons of T-P. The fertilizer nutrient concentrations of dairy feces was 0.26% N, 0.1% P2O5 and 0.14% K2O. Urine was found to contain 0.34% N, 0.003% of P2O5 and 0.31% K2O. The total daily fertilizer nutrients produced by dairy cattle were 197.4g (Milking cow), 97.4g(Dry cow), and 57.9g(Heifer) of Nitrogen, 54.2g(Milking cow), 22.2g(Dry cow), and 14.2g(Heifer) of P2O5 and 110.8g(Milking cow), 80.4g (Dry cow), and 39.5g(Heifer) of K2O. The total yearly estimated fertilizer nutrient produced by a 450kg dairy animal is 36.2kg of N, 8.8kg of P2O5, 24.6kg of K2O. The estimated yearly fertilizer nutrient production from all dairy cattle in Korea is 18,000 tons of N, 4,397 tons of P2O5, 12,206 tons of K2O. Dairy manure contains useful trace minerals for crops, such as CaO and MgO, which are contained in similar levels to commercial compost being sold in the domestic market. Concentrations of harmful trace minerals, such as As, Cd, Hg, Pb, Cr, Cu, Ni, Zn, met the Korea compost standard regulations, with some of these minerals being in undetected amounts.

SOME PHYSICAL OCEANOGRAPHIC RESEARCH ON KWANG YANG BAY ( I ) (광양만의 물리적 해황에 관한 연구 ( I ))

  • 장지원
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.10 no.1
    • /
    • pp.1-18
    • /
    • 1974
  • Some coastal oceanographic investigations in Kwang Yang Bay were carried out bimonthly from April to September (The first half period of the research project) in 1974. The behaviour of the waters, distributions of water temperature and salinity and diffusion characteristic by dye release experiments in the bay are studied for the problems of practical importance in connection with water pollution. Velocities and directions of tidal currents at five fixed stations were observed. And dye diffusion experiment was also carried out on the sea. According to the results from this study, the salinity of the water is lower, ranging from about $28\;\textperthousand\;to\;32\textperthousand$, on all over the surface in the bay with the cause that the fresh water flows in from the Sumjin river. Diffusivities in this sea by means of Rhodamine B diffusion elliperiment were $785.6\;{\times}\;10^2\;\textrm{m}^2/sec$ in major axis, $15.6\;{\times}\;10^2 \;\textrm{m}^2/sec$/sec in minor axis in the direction on patch after 30 minutes from the dye release.

  • PDF

Operation Parameters for the Effective Treatment of Steel Wastewater by Rare Earth Oxide and Calcium Hydroxide (효율적 제철폐수의 처리를 위한 희토류 화합물과 칼슘화합물의 운전인자 연구)

  • Lee, Chang-Yong;Lee, Sang-Min;Kim, Wan-Joo;Choi, Ko-Yeol
    • Applied Chemistry for Engineering
    • /
    • v.17 no.5
    • /
    • pp.483-489
    • /
    • 2006
  • The behavior of rare earth compounds such as $La_{2}O_{3}$, $CeO_{2}$, and $Ca(OH)_{2}$ on the removal of fluoride and heavy metals in the steel wastewater has been investigated. The removal mechanism of fluoride by rare earth elements has been known to be the formation of insoluble compounds between $F^{-}$ and cations such as $La^{3+}$ and $Ce^{4+}$ produced by the dissociation of rare earth compounds (To reduce the running cost of the fluoride wastewater treatment facility, their fluoride removal efficiencies were compared with those of inexpensive rare earth minerals such as natural lanthanide and cerium compound used as a glass polishing agent). All of the rare earth oxides used in this study showed a higher removal efficiency of fluoride than $Ca(OH)_{2}$ in the wastewater. In the case of artificial HF solution, the removal efficiency of fluoride showed in the order: $CeO_{2}$-mineral < $CeO_{2}$ < $Ca(OH)_{2}$ < $La_{2}O_{3}$-mineral < $La_{2}O_{3}$. However, the removal efficiency of fluoride in the wastewater increased in the following order: $Ca(OH)_{2}$ < $CeO_{2}$ mineral < $CeO_{2}$ < $La_{2}O_{3}$ mineral < $La_{2}O_{3}$. All agents showed high efficiencies for the removal of Mn and total Cr in the rare earth compounds. In the case of $Ca(OH)_{2}$, fluoride removal decreased with increasing pH while. However, the rare earth compounds showed a higher fluoride removal in higher pH condition, the optimum pH condition seemed to be around 7 considering both water quality and fluoride removal. Under the pH 7 condition, the $Ca(OH)_{2}$ was superior to rare earth compounds in Mn removal and the lanthanide was superior to others in total Cr removal.

Introduction of Kjeldahl Digestion Method for Nitrogen Stable Isotope Analysis (δ15N-NO3 and δ15NNH4) and Case Study for Tracing Nitrogen Source (Kjeldahl 증류법을 활용한 질산성-질소 및 암모니아성-질소 안정동위원소비 분석 및 질소오염원 추적 사례 연구)

  • Kim, Min-Seob;Park, Tae-Jin;Yoon, Suk-Hee;Lim, Bo-La;Shin, Kyung-Hoon;Kwon, Oh-Sang;Lee, Won-Seok
    • Korean Journal of Ecology and Environment
    • /
    • v.48 no.3
    • /
    • pp.147-152
    • /
    • 2015
  • Nitrogen (N) loading from domestic, agricultural and industrial sources can lead to excessive growth of macrophytes or phytoplankton in aquatic environment. Many studies have used nitrogen stable isotope ratios to identify anthropogenic nitrogen in aquatic systems as a useful method for studying nitrogen cycle. In this study to evaluate the precision and accuracy of Kjeldahl processes, two reference materials (IAEA-NO-3, N-1) were analyzed repeatedly. Measured the ${\delta}^{15}N-NO_3$ and ${\delta}^{15}N-NH_4$ values of IAEA-NO-3 and IAEA-N-1 were $4.7{\pm}0.2$‰ and $0.4{\pm}0.3$‰, respectively, which are within recommended values of analytical uncertainties. Also, we investigated spatial patterns of ${\delta}^{15}N-NO_3$ and ${\delta}^{15}N-NH_4$ in effluent plumes from a waste water treatment plant in Han River, Korea. ${\delta}^{15}N-NO_3$ and ${\delta}^{15}N-NH_4$ values are enriched at downstream areas of water treatment plant suggesting that dissolved nitrogen in effluent plumes should be one of the main N sources in those areas. The current study clarifies the reliability of Kjeldahl analytical method and the usefulness of stable isotopic techniques to trace the contamination source of dissolved nitrogen such as nitrate and ammonia.