• Title/Summary/Keyword: 발효돈분

Search Result 75, Processing Time 0.023 seconds

Effects of Pig Manure Composting Using Starch Pulp Treating on Growth and Yield Characteristics of Potato Cropping (전분박을 이용한 돈분발효퇴비의 시용이 감자의 생육과 수량에 미치는 영향)

  • 강봉균;현해남
    • Korean Journal of Organic Agriculture
    • /
    • v.10 no.1
    • /
    • pp.75-86
    • /
    • 2002
  • This study was conducted to investigate the effects of pig manure composting using starch pulp m growth and yield characteristics of potato cropping. Four treatments ; No compost, 1 : 1 : 0, 1 : 0.75 : 0.25 and 1 : 0.5 : 0.5 the mixing ratio of pig manure, saw dust, and dehydrated starch pulp and composting by Piling and blowing methods. Plant heights in first growth stage were higher for the treatment of saw dust compost and starch pulp compost than the treatment of chemical fertilizer, but after the stage, there were no significant difference among treatments. The number of stolons were met for 10.9 in 1 : 0.5 : 0.5 treatment, following 1 : 0.75 : 0.25 and 1 : 1 : 0. On the other hand, tuber diameter and top dry matter weight tended to be larger for manure treatment than no treatment but there was no significant difference. Total number of tubers were largest for 1 : 0.5 : 0.5, and those for 1 : 1 : 0 and 1 : 0.75 : 0.25 were similar. Tuber yields of not more than 80g tended to be different, but those of between 81g and 120g and more than 120g were apparently larger for the compost treatment than no treatment. The ratio of marketable tubers appeared large to be about 86% for 1 : 0.75 : 0.25 and 1 : 0.5 : 0.5 treatments. Ratio of infected common scab on potato tubers tended to be highest for 1 : 0.5 0.5 but there were no statistical significance. However, when compost was made by mixing starch pulp in future, the solutions to the occurrence of infected common scab must be considered, The contents of N. P, K and Ca in leaves were larger for the compost treatment than no treatment, but no significant difference was observed, Accordingly, the effects of treating starch pulp compost on growth and yield characteristics of potato cropping were more affirmative than those of saw dust compost.

  • PDF

Effect of Application Level of Animal Manure on the Nitrate Concentration, Sugar Content and Intake of Forage Sorghum X Sudangrass Hybrid (가축분 시용수준이 수수 X 수단그라스 교잡종의 질산태질소 함량과 당도 및 채식률에 미치는 영향)

  • Seo, S.;Kim, J.G.;Chung, E.S.;Kim, W.H.;Choi, G.J.;Lee, J.K.
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.22 no.2
    • /
    • pp.123-130
    • /
    • 2002
  • A field experiment was carried out to determine the effect of application level of animal manure on the nitrate nitrogen concentration, sugar content and animal intake of forage sorghum $\times$ sudangrass hybrid (Sorghum bicolor (L.) Moench, cv. Pionee. 988) in 1995. The application amount of animal manure were 50, 100 and 150MT in cattle manure, 20, 40 and 80MT in swine manure, and 10, 20 and 40MT/ha in poultry manure. Non-application plot(control) was involved. The nitrate nitrogen concentration was increased with increasing of application level of animal manure(P<0.05). Average nitrate nitrogen concentration was 397, 512, and 609mg/kg at low, medium and high application level of animal manure. The nitrate nitrogen concentration by plant height was 438mg/kg at 50~60m of plant height, 454mg at 100~120cm, and 418mg at 200~220cm. The nitrate nitrogen concentration of stems was 376mg, and significantly higher than that(135mg) of leaves(P<0.05) regardless of animal manure type, and lower parts of stems and leaves were significantly higher than those of upper parts of plants(P<0.05). Average nitrate nitrogen concentration of leaves was 151mg at lower, and 58mg at upper parts of plants, and the concentration of stems was 357mg at lower, 511mg at middle, and 610mg at upper parts of plants. The sugar contents of sorghum $\times$ sudangrass hybrid was decreased with increasing of application level of animal manure(P<0.05). Average sugar content was 4.9, 4.4, and 4.3。 at low, medium and high application level of animal manure. The sugar content by plant height was 3.9。 at 50~60 and 100~120cm of plant height, and 6.1。 at 200~220cm of plant height. Animal intake of sorghum $\times$ sudangrass hybrid was decreased greatly with increasing of application level of animal manure. Average intake was 73.9, 55.7, and 52.3% at low, medium and high application level of animal manure. The intake by animal manure type was 73.7% in cattle, 59.7% in swine and 62.5% in poultry manure.

Studies on the Nitrate Concentration, Sugar Content and Intake of Four Sorghum X Sudangrass Hybrids Grown under Application of Animal Manure (가축분 시용조건에서 4종 수수 X 수단그라 교잡종의 질산태질소 함량과 당도 및 채식률 비교 연구)

  • Seo, S.;Kim, J.G.;Chung, E.S.;Shin, D.E.;Lim, Y.C.;Yoon, S.H.
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.22 no.2
    • /
    • pp.131-136
    • /
    • 2002
  • A field experiment was carried out to compare the nitrate nitrogen concentration, sugar content and animal intake of low $sorghum{\times}sudangrass$ hybrids (Sorghum bicolor (L.) Moench) grown under application of animal manure in 1995. The application amount of animal manure were 40MT in cattle manure, and 30MT/ha in swine and poultry manure. The four NLCF's recommended hybrids used in this study were Pioneer 988, TE-Haygrazer and NC+ 855 (heading type), and Jumbo(headless type). The nitrate nitrogen concentration of forage was 365mg/kg at 50~60cm of plant height, 501mg at 100~120cm, and 502mg at 200~220cm, regardless of animal manure type and cultivar. The nitrate nitrogen concentration of NC+ 855 and P 988 was 519 and 526mg, respectively, and were higher than that(317mg) of Jumbo(P<0.05). The nitrate nioogen concentration of stems was 376mg, and significantly higher than that(135mg) of leaves(P<0.05) regardless of cultivar, and lower parts of stems and leaves were higher than those of upper parts of plants. The sugar contents of four $sorghum{\times}sudangrass$ hybrids were ranged between 3.1 and $3.7^{\circ}$ in cattle manure, 2.9 and $3.3^{\circ}$ in swine manure, and 2.8 and $4.9^{\circ}$ in poultry manure. The sugar content of NC+ 855 was the highest as $3.9^{\circ}$, p 988 was second as $3.4^{\circ}$, and then TE-Haygrazer and Jumbo were lower as $3.2^{\circ}$ and $2.9^{\circ}$, respectively. Animal intake of sorghum ${\times}$ sudangrass hybrids P 988 and NC+ 855 were slightly higher than those of Jumbo and TE-Haygrazer grown under application of cattle manure. Also the average intake of P 988 was a little higher than that of Jumbo. However, there were no significant differences of forage intake among few recommended $sorghum{\times}sudangrass$ hybrids.

Application Effect of Food Waste Compost Abundant in NaCl on the Growth and Cationic Balance of Rice Plant in Paddy Soil (NaCl을 다량 함유한 음식물쓰레기 퇴비 시용이 논 토양에서 벼의 생육과 체내 양이온 균형에 미치는 영향)

  • Lee, Sang-Eun;Ahn, Hyun-Jin;Youn, Seung-Kil;Kim, Seak-Min;Jung, Kwang-Young
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.33 no.2
    • /
    • pp.100-108
    • /
    • 2000
  • High sodium contents in food-waste compost(FWC) is the greatest limitation to recycle it to arable lands in Korea. The effects of the FWC application to paddy soil on the growth of rice plants, cationic balance in plants, and the sodicity of soil have been studied in pot trials. The effects of FWC application were compared with those of NaCl compound and swine manure compost(SMC) application. $Na_2O$ contents of FWC were high as 2.2%. Immediately after transplanting, rice plants in three treatments showed severe wilting in the order of 40Mg FWC $ha^{-1}$ > NPK+900kg $NaClha^{-1}$ > 20Mg FWC $ha^{-1}$. The high EC value and volatile acid contents of soil solution were regarded as the cause of severe wilting of young rice plants. Increase of NaCl application rate upto $900kgha^{-1}$ showed no significant reduction of dry matter yield at harvesting stage. Regardless of application rates FWC reduced the dry matter yield at harvesting stage, while SMC increased it with increase of application rates upto $40Mgha^{-1}$. In NPK+NaCl and FWC treatments, Na contents and equivalent ratio in plants increased linearly with increase of Na application rates. Between Na and K equivalent ratio negative correlation with high significance was shown. In contrast to much difference of Na, K, and Na/K equivalent ratio among treatments, little difference of Na+K indicated the physiological substitution of Na for K in rice plants. Na use efficiency in NPK+NaCl and FWC treatments showed 12-22%.

  • PDF

Studies on a Factor Affecting Composts Maturity During Composting of SWine Manure (돈분 퇴비화 중 부숙도에 미치는 영향인자 구명)

  • Kim, T.I.;Song, J. I.;Yang, C.B.;Kim, M.K.
    • Journal of Animal Science and Technology
    • /
    • v.46 no.2
    • /
    • pp.261-272
    • /
    • 2004
  • This study was conducted to investigate indices affecting composts maturity for swine manure compost produced in a commercial composting facility with air-forced from the bottom. The composting was made of swine manure mixed with puffing rice hull(6: 4) and turned by escalating agitator twice a day. Composting samples were collected periodically during a 45-d composting cycle at that system, showing that indices of Ammonium-N to Nitrate-N ratio were sensitive indicators of composting quality. Pile temperature maintained more than 62$^{\circ}C$ and water contents decreased about 20% for 25days of composting. A great variety and high numbers of aerobic thermophilic heterotropic microbes playing critical roles in stability of composts have been examined in the final composts, sbowing that they were detected $10^8$ to $10^{10}$ $CFUg^{-1}$ in mesophilic bacteria, $10^3$ - $10^4$ in fungi and $10^6$ - $10^8$ in actinomycetes, respectively. The results of this study for detennining a factor affecting compost stability evaluations based on composting steps were as follows; 1. Ammonium-N concentrations were highest at the beginning of composting, reaching approximately 421mg/kg. However Ammonium-N concentrations were lower during curing, reaching approximately l04mg/kg just after 45 day. The ratio between $NH_4-N$ and $NO_3-N$ was above II at the beginning of composting and less than 2 at the final step(45 day). 2. Seed germination Index was dependent upon the compost phytotoxicity and its nutrition. The phytotocity caused the GI to low during the period of active composting(till 25 days of composting time) depending on the value of the undiluted. After 25 days of composting time, the GI was dependent upon compost nutrition. The Gennination index of the final step was calculated at over 80 without regard to treatments. 3. E4: E6 ratio in humic acid of composts was correlatively decreased from 8.86 to 6.76 during the period of active composting. After 25 days of composting time, the E4: E6 was consistently decreased from 6.76 to 4.67($r^2$ of total composting period was 0.95). 4. Water soluble carbon had a tendency to increase from 0.54% to 0.78%during the period of active composting. After 25 days of composting time, it was consistently decreased from 0.78% to 0.42%. Water soluble nitrogen increased from 0.22% to 0.32% during the period of 15 days after initial composting while decreased from 0.32% to 0.21% after 15days of composting. In consequence, the correlation coefficient($r^2$) between water soluble carbon and water soluble nitrogen was 0.12 during the period of active composting mule was 0.50 after 25 days of composting time