• Title/Summary/Keyword: 발포제

Search Result 182, Processing Time 0.025 seconds

Effect of Introducing EG on Foamed Cellular Structure and Properties in the Foaming Process of Rigid PU (경질 PU발포공정에 있어서 EG의 첨가가 발포체의 구조와 물성에 미치는 영향)

  • Baek, Woon-Seon;Lee, Kee-Yoon
    • Polymer(Korea)
    • /
    • v.25 no.4
    • /
    • pp.528-535
    • /
    • 2001
  • Polyurethane specimens were mainly composed of polyol, MDI, silicone surfactant, and water. The effects of ethylene glycol on the cell size, forming magnification, cream time, gel time, take free time, final free rising height, and reactive temperature were investigated. The cyclopentane was used for PU foam as a physical blowing agent. The components were hand-mixed at about 5000 rpm within 4 seconds at room temperature. The mixtures with various ethylene glycol contents were foamed in the wood mold. When the index of isocyanate was fixed, as the amount of ethylene glycol increased, cell size and thermal conductivity were decreased by about 5.1% and 14%, respectively.

  • PDF

정보 - EPS 농산물 상자 표준규격 포함

  • 한국발포스티렌재활용협회
    • 환경사랑
    • /
    • s.63
    • /
    • pp.9-9
    • /
    • 2012
  • 2011년 1월 '완구 인형 및 종합제품 EPS포장 사용 금지 규정의 삭제'로 EPS에 대한 규제가 완전 해제됨에 따라 국립농산물품질관리원은 "농산물품질관리법" 제4조 및 동법 시행규칙 제5조의 규정에 의하여 EPS 포장 상자를 포함한 농산물표준규격을 개정 고시(국립농산물품질관리원 고시 제2011-45호, 2011. 12. 21.)하였다.

  • PDF

Production Process of Foamed Glass by Compressive Shaping (가압성형 방법에 의한 발포유리의 제조공정)

  • Lee, Chul-Tae
    • Applied Chemistry for Engineering
    • /
    • v.24 no.3
    • /
    • pp.239-246
    • /
    • 2013
  • Principle of foamed glass manufacturing process first starts with putting vitreous material powder into a mold. After the foaming calcination, foamed body should be annealed after separation from the mold. For this reason, existing manufacturing process could not be a continuous type process. In this study, in order to develop a continuous production process of foamed glass, the possibility of new foam glass manufacturing process was investigated by foaming calcination of the compact body obtained from compression-molding of vitreous raw materials in stead of using a mold. Through the experimental results of the foaming calcination of the compact body with adding various foaming agents such as $Na_2CO_3$, $CaCO_3$ and petroleum coke, into hydrated soda-lime vitreous raw materials, it was shown that developing a continuous process without using any molds for manufacturing foamed glass would be possible.

A study on the fabrication of foamed glass by using refused coal ore and its physical properties (석탄 폐석을 이용한 발포유리의 제조 및 물리적 특성 연구)

  • Lim, Tae-Young;Ku, Hyun-Woo;Hwang, Jong-Hee;Kim, Jin-Ho;Kim, Jung-Kook
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.21 no.6
    • /
    • pp.266-273
    • /
    • 2011
  • Foamed glass was fabricated by using glass powder and foaming agents. For the glass powder, we used sodalime glass which's manufactured by using refused coal ore obtained as by-product from Dogye coal mine in Samcheok. And for the foaming agents, we used Calcium carbonate, Calcium phosphate and powder of shale type refused coal ore itself which has high content of carbon materials. We additionally used liquid binder for forming, and mixed together. And we formed rectangular shape and treated $800^{\circ}C$ for 20 min in an electrical furnace. The various kinds of foam glass samples were fabricated according to the kinds of foaming agents. The physical properties of samples, as specific gravity and compressive strength, were measured. Pore structure of each samples were investigated too. Foam glass with specific gravity of 0.4~0.7 and compressive strength of 30~72 kg/$cm^2$. Especially we get satisfying foam glass sample with low specific gravity of 0.47 and high compressive strength of 72 kg/$cm^2$ by the use of liquid calcium phosphate as foaming agent. It also had small and even shape of pore structure. Therefore, it is concluded that refused coal ore can be used for raw materials to manufacture secondary glass products such as a foamed glass panel for construction and industrial materials.

Preparation & Properties of the Flame Retarded NBR Foams with Phosphorus/Nitrogen-Containing Flame Retardants (인/질소계 난연제를 포함한 난연 NBR 발포체의 제조 및 특성)

  • Jo, Byung-Wook;Moon, Sung-Chul;Choi, Jae-Kon
    • Elastomers and Composites
    • /
    • v.39 no.2
    • /
    • pp.105-120
    • /
    • 2004
  • The flame retarded NBR foams were prepared with metal hydroxides and various phosphorus/nitrogen-contain ing flame retardants. The dependency of the phosphorus content on thermal properties, flame retardancy, smoke density, and foaming properties were investigated in the foams. Foaming properties and morphology of the flame retarded NBR foams with P/N flame retardants( ${\le}10 phr$) were similar to those of the foams without P/N ones but containing metal hydroxides The flame retardancy of the foams was improved with increasing the phosphorus content and char formation under combustion atmosphere. The cone-calorimeter test and LOI index were also coincided with the TGA analysis quite well. The heat release rate (HRR), total heat release (THR), and effective heat of combustion (EHC) were decreased, whereas the carbon monoxide yield was increased with increase of the phosphorus content of P/N flame retardant. The smoke density values were closely related with CO yield values obtained by the cone-calorimeter test due to the high and hard char formation.

MCPs Product and Process Design of Mixed Materials Using Axiomatic Design (공리적 설계를 이용한 발포제 혼합재료의 MCPs 제품 및 공정 설계)

  • 이경수;차성운
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1414-1417
    • /
    • 2003
  • In chemical forming process, mixed materials of LDPE, EVA and forming agent are used. However mechanical properties has been dropping remarkably through this forming process. In this study, Above materials(LDPE, EVA) were used in microcellular foaming injection process. And various effective factors in this process were selected by Axiomatic approach and systematically estimated by DOE(Design of Experiments). As a results, injection type and rate of mixing resins have more influence on forming rate than other factors.

  • PDF

A study on selective hybrid-structure film fabricated by 355nm UV-pulsed laser processing (355nm UV 레이저를 이용한 선택적 하이브리드 구조 필름의 제작에 관한 연구)

  • Kim, Myung-Ju;Lee, Sang-Jun;Shin, Bo-Sung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.5
    • /
    • pp.2979-2984
    • /
    • 2015
  • This paper has presented a new foaming technology of selective hybrid-structured polymer film with expanded pores. The porous structure of closed pore was firstly fabricated by applying the 355nm UV-pulsed laser to 0.1mm thick film that was uniformly mixed with PP pellets, copper powder, and CBA (Chemical Blowing Agent). In order to expand pore size of closed-cell shape, LAMO(Laser Aided Micro pore Opening) processing was conducted to heat the copper powder, and then the bigger pore size of closed-cell more than existing pore size was successfully formed because of rapid conduction of heated metal powder. From the experimental results, various process parameters such as laser fluence, intensity, scan rate, spot size and density of powder and CBA were considerably considered to reveal the correlation among the pore characteristics. In the future, a function experiment will be carried out to use the hybrid film of industrial applications.

Foaming Characteristics of Ethylene Vinyl Acetate/Styrene Vinyl Isoprene Styrene Triblock Copolymer Blend (Ethylene Vinyl Acetate / Styrene Vinyl Isoprene Styrene Triblock Copolymer 블렌드의 발포특성)

  • Heo, Jae-Young;Kim, Jin-Tae;Yoon, Jung-Sik;Yoo, Jong-Sun;Kim, Won-Ho
    • Elastomers and Composites
    • /
    • v.35 no.2
    • /
    • pp.106-114
    • /
    • 2000
  • The foam of ethylene vinyl acetate (EVA)/styrene-vinyl isoprene-styrene triblock copolymer(SVIS) blend was prepared to improve the shock-absorption and compression set characteristics at room temperature. The effects of blowing agent and blend ratio of EVA/SVIS on expansion ratio, cell structure and mechanical properties of the foam were investigated. As the SVIS content increased, the viscosity of blends was increased but the crosslinking rate was slow down, the expansion ratio was decreased. and the specific gravity was increased. At room temperature, the resilience was not affected by increasing the amount of blowing agent. The value of tan ${\delta}$ was increased by increasing the amount of SVIS. As a result, the value of compression set was decreased. This is due to the increased values of specific gravity and crosslinking density of the EVA/SVIS foam.

  • PDF