• Title/Summary/Keyword: 발파계수

Search Result 62, Processing Time 0.025 seconds

Blast Coefficient for Bench Blasting (벤치발파 설계에서 발파계수 설정에 관한 연구)

  • Kim, Hee-Do;Kim, Jung-Kyu;Ko, Young-Hun;Noh, You-Song;Shin, Myeong-Jin;Yang, Hyung-Sik
    • Explosives and Blasting
    • /
    • v.33 no.1
    • /
    • pp.1-12
    • /
    • 2015
  • In this study, the domestic bench blasting sites were researched to set the blast coefficient C according to the type of rock and type of industry. With the use of the experimental data on the representative industrial explosives and the data of the manufacturers'data on explosives, powder coefficient e was set up. The blast coefficient C was 0.21~0.30 when the average value for 5 representative kinds of rocks including granite was searched. The blast coefficient C for quarrying, mining and construction sites were 0.22, 0.13 and 0.26 respectively. On the other hand, powder coefficient e was obtained in four elements such as reactive energy, ballistic mortar test, VOD, Langefors'strength per unit weight. e value for emulsion which is one of the representative explosives was found to be 1 while those of high performance emulsion and ANFO were found to be 0.9 and 1, respectively.

A Study on Evaluation of strength Coefficient of Some Explosives Produced in Korea (국내산 주요폭약의 위력계수 산정에 관한 연구)

  • 이천식;김형섭
    • Explosives and Blasting
    • /
    • v.19 no.1
    • /
    • pp.93-100
    • /
    • 2001
  • 산업용 폭약을 이용하여 자연상태의 암반을 굴착하고자 할 때 고려해야 할 주요한 사항중의 하나로서 폭약의 위력계수를 들 수 있다. 이 값은 시험 발파는 물론 본 발파 시 적정 폭약량을 산정 하는데 중요한 요소이기 때문이다. 우리 나라는 다이너마이트 등 여러 종류의 폭약이 제조, 사용되고 있으나 지금껏 이에 관한 구체적인 보고가 전혀 이루어지지 못한 실 정이다. 따라서, 본 연구는 주요 국내산 폭약에 대해 적정 폭약량 산정을 위한 폭약의 위력계수 (e)와 발파 시 유발되는 진동상수(k) 추정을 위한 폭약의 위력계수의 역수(1/e)를 산정하고 그 결과를 제시하고자 하는 것이다.

  • PDF

Study on the Classification of Weak Rock by Test Blast (시험발파에 의한 연약암반 평가에 대한 연구)

  • 선우춘;전양수;천대성;한공창
    • Explosives and Blasting
    • /
    • v.21 no.4
    • /
    • pp.1-10
    • /
    • 2003
  • The classification of weak rocks is normally connected with the rippability classifications. The excavation of rock is frequently carried out by blasting. A classification of the weak rocks by test blasting with small quantity of explosives was attempted in the present study. The crater ratio and blasting constant that resoled from test blasting were used as a e parameter of the classification. The seismic velocity of rock mass and Protodyakonov's index were also applied for the also rock classification.

Prediction of Vibration Variables and Determination of Amplification Factor from Domestic Blasting Data (우리나라 자료를 이용한 발파 진동 예측식과 진동증폭계수)

  • 양형식;장선종
    • Explosives and Blasting
    • /
    • v.20 no.3
    • /
    • pp.73-81
    • /
    • 2002
  • 본 연구에서는 국내의 발파 자료를 이용하여 지반진동을 무차원적으로 예측하는 경험식을 도출하였다. 또 지반진동에 의한 구조물진동의 증폭계수를 산정하여 구조물 예상 응답스펙트럼을 작도할 수 있도록 하였다.

절리특성을 고려한 터널 발파 설계

  • 임경호;김치환;남기천;박성록;이성규
    • Proceedings of the Korean Society for Rock Mechanics Conference
    • /
    • 2001.03a
    • /
    • pp.85-94
    • /
    • 2001
  • 터널 발파시 발파효율은 암반의 특성에 큰 영향을 받기 때문에 암반 특성을 분석하고 이를 기초로 발파설계를 수행하는 것이 중요하다. 그럼에도 불구하고 현재까지 국내에서의 발파설계는 무결암의 단축압축강도만으로 발파암을 분류한 후 각 발파암의 발파계수를 구하는 방법을 이용하거나 공학적 암반분류법의 하나인 RMR 분류를 이용하여 발파암을 분류하되 객관적 근거가 미약한 경험적인 발파계수를 산정 하는 방식을 통하여 이루어졌다. 본 연구에서는 절리특성을 고려한 발파설계를 위하여 Ashby의 접근법을 활용하였다. 또한 절리조사 결과를 통한 발파암 분류방법과 발파패턴설계를 추가하여 발파설계 전 과정을 수행할 수 있도록 Ashby의 접근법을 응용하였다. 따라서 절리 분포 특성을 고려한 발파암 분류가 가능하고, 절리암반 특성을 고려한 발파설계를 수행할 수 있을 것으로 기대된다.

  • PDF

Blasting vibration coefficients and mechanical characteristics of Taegu area (대구지역지층의 지질특성과 대표암반에 대한 발파진동계수산출)

  • 안명석;김종대;김남수
    • Tunnel and Underground Space
    • /
    • v.10 no.2
    • /
    • pp.211-217
    • /
    • 2000
  • In this, study, some laboratory tests and in-situ test were performed for Taegu area. Test blasting was conducted to determine blasting vibration coefficients. The uniaxial strength of rocks vary widely from weathered rock to extremely hard rock. Boasting vibration coefficient, K and n were 114.8, 1.48 for Sungseu site, where rocks show weathered to medium strength.

  • PDF

Prediction of Rock Fragmentation and Design of Blasting Pattern based on 3-D Spatial Distribution of Rock Factor (발파암 계수의 3차원 공간 분포에 기초한 암석 파쇄도 예측 및 발파 패턴 설계)

  • Shim Hyun-Jin;Seo Jong-Seok;Ryu Dong-Woo
    • Tunnel and Underground Space
    • /
    • v.15 no.4 s.57
    • /
    • pp.264-274
    • /
    • 2005
  • The optimum blasting pattern to excavate a quarry efficiently and economically can be determined based on the minimum production cost which is generally estimated according to rock fragmentation. Therefore it is a critical problem to predict fragment size distribution of blasted rocks over an entire quarry. By comparing various prediction models, it can be ascertained that the result obtained from Kuz-Ram model relatively coincides with that of field measurements. Kuz-Ram model uses the concept of rock factor to signify conditions of rock mass such as block size, rock jointing, strength and others. For the evaluation of total production cost, it is imperative to estimate 3-D spatial distribution of rock factor for the entire quarry. In this study, a sequential indicator simulation technique is adopted for estimation of spatial distribution of rock factor due to its higher reproducibility of spatial variability and distribution models than Kriging methods. Further, this can reduce the uncertainty of predictor using distribution information of sample data The entire quarry is classified into three types of rock mass and optimum blasting pattern is proposed for each type based on 3-D spatial distribution of rock factor. In addition, plane maps of rock factor distribution for each ground levels is provided to estimate production costs for each process and to make a plan for an optimum blasting pattern.

Tunnel Blast Design in Consideration of Joint Properties (절리특성을 고려한 터널 발파 설계)

  • 김치환
    • Tunnel and Underground Space
    • /
    • v.11 no.2
    • /
    • pp.182-189
    • /
    • 2001
  • Rockmass properties have great influence on blasting performance so that it cannot be overemphasized to analyze rockmass properties and to perform blast design based on them. Up to the present, however blast design is performed either considering only uniaxial compressive strength of intact rock or using RMR classification as a blast ability classification scheme. In this paper Ashby's approach is adopted to evaluate blast index. In addition. rockmass classification for the blast design based on joint survey results and pattern design procedure are added to Ashby's original approach. With this extended approach, blastability can be classified considering joint properties and objectiveness of evaluated blast index can be confirmed. This approach is anticipated to enhance the tunnel blast design by considering joint properties and classifying the rockmass for blast design.

  • PDF

Study on the Effect of Rock Blasting (암석파괴효율(岩石發破效率)에 관한 연구(硏究))

  • Kim, Woong Soo;Lee, Keun Bai
    • Economic and Environmental Geology
    • /
    • v.13 no.1
    • /
    • pp.29-50
    • /
    • 1980
  • 1. 현장발파(現場發破)에 있어서 오늘날 충분(充分)히 실용(實用)할 수 있는 발파이론(發破理論)이 확립(確立)되어 있지 않다고 본다. 그 이유(理由)는 종래(從來) 사용해오던 Hauoser의 공식(公式)이 실용발파(實用發破)에 전(全)혀 도움을 주지 못하기 때문이다. 즉(卽), i) 장약량수정(裝藥量修正)에 관(關)한 누두함수(漏斗函數) f(n) 발파규모수정항(發破規模修正項) f(W)와의 혼용(混用) ii) 암석항력계수(岩石抗力係數) g와 단위체적당폭약소비량(單位體積當爆藥消費量) $(kg/m^3)$과의 오용(誤用) iii) 폭파계수(爆破係數) C가 egd인가, f(W) egd인가의 부명확성(不明確性) 등이다. 본연구에서의 이와 같은 제문제점(諸問題點)을 명확(明確)히 하고 2. 제발발파이론(齊發發破理論)을 확대적용(擴大適用)하여 bench 발파(發破), smooth blasting 및 소할발파(小割發破)에 있어서는 장약량공식(裝藥量公式)을 유도(誘導)할 수 있음을 증명(證明)하고 3. 갱도굴착단면계수(坑道掘鑿斷面係數) 및 발파규모(發破規模)에 의하여 수정(修正)한 단위체적당장약량(單位體積當裝藥量)$(kg/m^3)$을 구(求)하고 총장약량(總裝藥量)을 산출(算出)하여 발파설계(發破設計)를 할 수 있는 방법(方法)의 예(例)를 들어 보였다.

  • PDF

Prediction and Determination of Correction Coefficients for Blast Vibration Based on AI (AI 기반의 발파진동 계수 예측 및 보정계수 산정에 관한 연구)

  • Kwang-Ho You;Myung-Kyu Song;Hyun-Koo Lee;Nam-Jung Kim
    • Explosives and Blasting
    • /
    • v.41 no.3
    • /
    • pp.26-37
    • /
    • 2023
  • In order to determine the amount of explosives that can minimize the vibration generated during tunnel construction using the blasting method, it is necessary to derive the blasting vibration coefficients, K and n, by analyzing the vibration records of trial blasting in the field or under similar conditions. In this study, we aimed to develop a technique that can derive reasonable K and n when trial blasting cannot be performed. To this end, we collected full-scale trial blast data and studied how to predict the blast vibration coefficient (K, n) according to the type of explosive, center cut blasting method, rock origin and type, and rock grade using deep learning (DL). In addition, the correction value between full-scale and borehole trial blasting results was calculated to compensate for the limitations of the borehole trial blasting results and to carry out a design that aligns more closely with reality. In this study, when comparing the available explosive amount according to the borehole trial blasting result equation, the predictions from deep learning (DL) exceed 50%, and the result with the correction value is similar to other blast vibration estimation equations or about 20% more, enabling more economical design.