• Title/Summary/Keyword: 발열 의류

Search Result 23, Processing Time 0.019 seconds

Optimal Heating Location for developing the Heating Smart Clothing based on Thermal Response of Body (발열 기능 스마트 의류를 위한 인체 온열반응 기반의 최적의 발열위치 연구)

  • Cho, Hakyung;Cho, Sangwoo
    • Science of Emotion and Sensibility
    • /
    • v.18 no.3
    • /
    • pp.93-106
    • /
    • 2015
  • In accordance with escalating demands for advanced technology products, the smart clothing that includes embedded ICT technology have expanded into fields of daily life. As a result of this trend, interest in smart clothing with digitally controllable heating has rapidly grown and the market for smart heated clothing has also expanded. Increasing of prospect in smart heated clothing market, the effectiveness and thermal sensation research of the location on the pad attached is insufficient. This study was conducted to find the optimal location of heated clothing via experimental research on changes in skin temperature and subjective thermal sensation when heating pads were placed on different areas of the body. For this experiment, the subjects consisted of 10 males in their 20's of standard physique. The skin temperature at 11 different areas of the body, rectal temperature, and subjective thermal sensation were taken at different stages (before testing, after a 20 minute rest period, 20 minute treatment period, and after a 40 minute recovery period) in an artificial-climate chamber at $-5^{\circ}C$. As a result, the optimal location for heating pads in smart clothing was estimated and suggested.

Analysis of Design Elements and Heating System of Domestic and Foreign Commercial Electrical Heated Clothing (국내외 발열의류의 디자인 요소 및 발열시스템 분석)

  • Kim, Kyuyeon;Kim, Siyeon;Lim, Daeyoung;Ha, Jisoo;Jeong, Wonyoung
    • Fashion & Textile Research Journal
    • /
    • v.23 no.2
    • /
    • pp.273-289
    • /
    • 2021
  • This study aimed to examine the appearance of heated clothing in relation to fashion trends by analyzing constructive components of clothing using product images and actual products. A total of 91 images of domestic and foreign heated clothing products were collected, and a product analysis conducted with six parameters of item classification, namely, concept and image, silhouette, color, number of heating elements, and heating parts. In addition, an in-depth analysis was carried out with 11 products among them, while focusing on further detailed components of the design and heating system. As a result, the overall exterior design of domestic products has been changed from outdoor clothing to daily clothing reflecting the current design trend. Compared with domestic products, foreign products showed a diverse assortment and a greater number of heating regions per individual item of clothing. The current heating system commonly consists of a heating element, power source, controller board, and wires, although the existence and type of switches differed from product to product. To develop a more efficiently heated clothing to expand the market, the design, ease of use, safety, consumer preference, heating functionality, and durability should be considered. Along with design recommendations for future heated clothing, this study also provides a practical guide to the technical aspects of the design of the components of heated clothing.

Heat Generation Characteristics of Emotional and Intelligent ZrC Imbedded Garment through Thermal Manikin Measurement (탄화지르코늄 함유 감성 인텔리전트 의류의 써멀 마네킹 측정에 의한 발열 특성)

  • Kim, Hyunah;Kim, Seungjin
    • Science of Emotion and Sensibility
    • /
    • v.18 no.3
    • /
    • pp.17-24
    • /
    • 2015
  • This study investigated heat generation characteristics of knitted and woven intelligent garments made of ZrC imbedded yarns through thermal manikin measurement. These emotional and intelligent thermal characteristics by thermal manikin measurement were analysed and compared with light/thermal radiation experimental results. Surface temperature of ZrC imbedded woven and knitted fabrics by light/thermal radiation measurement was $4^{\circ}C$ and $2^{\circ}C$ higher than that of regular PET control fabrics, respectively. Clo value as heat generation characteristics of ZrC imbedded woven and knitted garments with light exposure was 0.14 and 0.08 higher than that of regular PET control garments, respectively. These results were attributed to the far-infrared thermal radiation from ZrC imbedded in the core part of the intelligent bi-component filament, which was verified by far-infrared emissive power ranged between $6{\mu}m$ and $20{\mu}m$ through FT-IR experiment and by inclusion of Zr through EDS ingredient analysis. However, compressibility of ZrC imbedded woven fabric was lower than that of regular PET one, and bending rigidity was higher than that of regular one, which resulted in a little stiff tactile hand property of ZrC imbedded fabric. We found that ZrC imbedded intelligent woven and knitted fabrics were applicable to the intelligent garment as a heat generation textile material by thermal manikin measurement.

Development of intelligent thermoregulation textile material for sportswear (스포츠 의류용 지능형 체온조절 섬유소재 개발)

  • Oh, Dong-Ki;Jung, Koo;Yang, Gwang-Wung;Rho, Yong-Hwan
    • Proceedings of the Korean Society of Dyers and Finishers Conference
    • /
    • 2012.03a
    • /
    • pp.98-98
    • /
    • 2012
  • 최근 국내외에서 첨단 기능성 섬유에 대한 소비자들의 관심이 높아지면서 다양한 분야에서 기능성 소재들이 개발되고 있다. 특히 기능성 스포츠웨어 시장에서는 계절의 경계를 넘어 야외 활동 중에 사용할 수 있는 제품에 대한 요구가 증가되고 있는데, 날씨가 매우 덥고 햇살이 뜨거운 것에서부터, 얼음처럼 차갑고 추운 것까지 가지각색 인 경우가 있을 수 있다. 이러한 변화무쌍한 날씨에 쾌적한 활동을 하기 위해서는 외부 온도변화에 대응하여 몸을 보호하고 자연환경에 맞설 수 있는 의복의 필요성이 부각되고 있다. 본 연구에서 개발하고자 하는 지능형 체온조절 섬유는 정적상태에서는 보온성과 적외선을 방출을 통한 자가 발열기능을 부여하고, 동적상태에서는 태양열 증폭기능과 운동량에 따른 흡습발열의 기능을 통하여 자연환경과 의복환경의 변화에 대응할 수 있는 스포츠웨어 제품이다. 따라서 보온성이 우수한 PP, acrylate 원사 등을 이용하여 복합 방적사 설계 및 생산을 최적화였다. 또한 흡습발열 성능이 향상된 섬유구조체를 설계하여 개발 원사 구성에 따라 보온 발열 기능성 부여 방법을 달리하여 최적의 성능을 이끌어내는 제품을 개발하고자 하였다.

  • PDF

Development of Design for Heating Vest with Detachable Heating Device (발열체 탈부착형 발열조끼의 디자인 개발)

  • Lee, Jooeun;Lee, Byunghong
    • Journal of Fashion Business
    • /
    • v.18 no.5
    • /
    • pp.82-98
    • /
    • 2014
  • The influence from the increased income and aging society has amplified the interest in the well-being trend and health. People tend to enjoy sports and outdoor life. The development of smart clothing containing heating function to help maintain body temperature has been actively researched after the mid 2000s. However, the domestic study on heating clothing is severely limited. Practical study on designing heating clothing which can be commercialized is needed. The purpose of this study is to develop a commercialized detachable heating vest design through collaboration with a heating vest manufacturer. The results of this study are as follows: 1) Conducted the interview with manufacturer and a demand survey with consumers in order to develop the heating vest design. 2) Developed heating vest design that reflected the wants in the demand survey and sketched the prototype of detachable heating vest. 3) Made a sample of the heating vest and tested the wearability to illustrate the result of this study. Overall, the wearing test result showed high satisfaction for both gender.

Evaluation for the Heating Performance of the Heated Clothing on Market (시판 발열의복의 발열성능 평가)

  • Lee, Hyun-Young;Jeong, Yeon-Hee
    • Fashion & Textile Research Journal
    • /
    • v.12 no.6
    • /
    • pp.843-850
    • /
    • 2010
  • To evaluate the heating performance of commercial heated vests, we investigated the thermal images and the temperature between body and vest for three heated vests. We captured infrared thermography by FT-IR Spectrometer to analyzed the heating temperature of the heating elements taken from the vests, and the maximum heating temperature of the vests was compared with thermal image in the room temperature($18^{\circ}C$). In outdoor experiment($-4.7^{\circ}C$), we measured the inner temperature as well as the thermal image of heated vests. Four healthy men participated in this experiment, and the ANOVA and Duncan test was performed for statistical analysis. As the results, the heating temperature range of the heated vests used in this experiment was $32{\sim}42^{\circ}C$, much lower than the displayed temperature range in their specifications, so the exact specification for heating performance of heated clothing was required. In comparisons of the heating performance among the heated vests, we found out that the insulation of clothing is very important to design the heated clothing, because the inner temperature of the vest had good insulation by itself was higher than that of the vest shown higher temperature over $7^{\circ}$ than another vests at the heating temperature.

Development and Evaluation of Wearable Device with Heat and Massage Function (안마 및 발열기능의 스마트 조끼 개발과 성능 및 만족도 평가)

  • Roh, Eui Kyung;Yoon, Mi Kyung
    • Fashion & Textile Research Journal
    • /
    • v.22 no.5
    • /
    • pp.676-685
    • /
    • 2020
  • This study developed smart vests with heat and massage functions that changed patterns, designs, materials, etc., and evaluated their functions and satisfaction. A knitted fabric with good elasticity and a heating lining were used, and in consideration of this, the final vest pattern fitted to the upper body was completed. A heat pad was attached to the back, and 6 vibration motors were attached to the trapezius muscle. The controller was placed on the left chest for easy operation, and the battery was stored in an inner pocket under the controller. The heating effect of the smart vest, the location of the devices, and the ease of operation were excellent. When the massage function was operated, the thermal comfort was increased compared to when the massage function was not operated, and the high thermal comfort was perceived by the operation of heat and heat+massage function. Due to the battery, the weight, irritating contact of devices and wearing sensation decreased, but there was no reduction in wearing sensation due to heat and vibration devices. The greater the satisfaction with the massage function, thermal comfort, fit, appearance and weight, the greater the product satisfaction.

A Study of the analysis on the risk of ignition and low-temperature burns caused by the use of electrically heated clothes (발열의류로 인한 화재위험성 및 저온화상에 대한 분석 연구)

  • Lee, Jeong-Il
    • Journal of the Society of Disaster Information
    • /
    • v.14 no.2
    • /
    • pp.122-129
    • /
    • 2018
  • Purpose : This study aims to seek out the risk of low-temperature burns and fire. Method : Hot vests are connected by higher voltage than walking voltage. Results : Accordingly, the possibility of low-temperature burns and fire was proved high. It was also shown that hot vests with relatively lower resistance on heat rays reached a higher temperature as the same voltage was applied. Conclusion : There are some problems with hot vests because they do not have any safety devices like a thermostat or a timer to prevent temperature increasing rapidly. For the purpose of reducing the risk of low-temperature burns and fire, setting the standard of the minimum resistance temperature and regulating the use of heat rays with lower resistance are necessary.

Prototype of Smart Foundation with Heating Devices (발열장치를 이용한 기능성 스마트 파운데이션의 구성 시안)

  • Hwang, Young-Mi;Lee, Jeong-Ran
    • Fashion & Textile Research Journal
    • /
    • v.14 no.4
    • /
    • pp.588-596
    • /
    • 2012
  • This research was intended to design an experimental girdle with thermal insulation function for adult women in their 20s. The design of the experimental girdle was based on the pattern of commercially available girdle. The final pattern of the experimental girdle was established according to the drawing equations determined based on the result of appearance evaluation. The equations were (waist circumference${\times}0.88$)/2 for waist circumference, (hip circumference${\times}0.77$)/2 for hip circumference, and (thigh circumference${\times}0.85$) for thigh circumference. In order to develop a heating device, the most effective fabric heater was adopted based on the experiments about the number of caron fibers, heater size and attachment site. Three heaters-one with a size of $14.5{\times}9.5$ cm, and the other two with the size of $8.0{\times}15.0$ cm-were attached to the areas corresponding to the lower abdomen and the hip, 5 cm below the waist. A heater was developed by connecting these heaters to a controller, 2 batteries (7.4 V 2000 mAh lithium polymer batteries) and a switch (for mode conversion between high/medium/low temperatures). The heater was integrated into the inside of the girdle, so that attachment and detachment were possible without the change of appearance. The tentative configuration plan was proposed for the development of a functional smart girdle with an excellent thermal insulation effect.

Preparation and Characterization of Carbon Nanofiber Composite Coated Fabric-Heating Elements (탄소나노섬유복합체를 이용한 의류용 직물발열체의 제조 및 특성)

  • Kang, Hyunsuk;Lee, Sunhee
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.39 no.2
    • /
    • pp.247-256
    • /
    • 2015
  • This study prepared fabric-heating elements of carbon nanofiber composite to characterize morphologies and electrical properties. Carbon nanofiber composite was prepared with 15wt% PVDF-HFP/acetone solution, and 0, 1, 2, 4, 8, and 16wt% carbon nanofiber. Dispersion of solution was conducted with stirring for a week, sonification for 24 hours, and storage for a month, until coating. Carbon nanofiber composite coated fabrics were prepared by knife-edge coating on nylon fabrics with a thickness of 0.1mm. The morphologies of carbon nanofiber composite coated fabrics were measured by FE-SEM. Surface resistance was determined by KS K0555 and worksurface tester. A heating-pad clamping device connected to a variable AC/DC power supply was used for the electric heating characteristics of the samples and multi-layer fabrics. An infrared camera applied voltages to samples while maintaining a certain distance from fabric surfaces. The results of morphologies indicated that the CNF content increased specifically to the visibility and presence of carbon nanofiber. The surface resistance test results revealed that an increased CNF content improved the performance of coated fabrics. The results of electric heating properties, surface temperatures and current of 16wt% carbon nanofiber composite coated fabrics were $80^{\circ}C$ and 0.35A in the application of a 20V current. Carbon nanofiber composite coated fabrics have excellent electrical characteristics as fabric-heating elements.