• 제목/요약/키워드: 발생 예측

검색결과 9,236건 처리시간 0.035초

마코프 체인 프로세스를 적용한 해양사고 발생 예측 (Prediction of Marine Accident Frequency Using Markov Chain Process)

  • 장은진;임정빈
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 2019년도 추계학술대회
    • /
    • pp.266-266
    • /
    • 2019
  • 해마다 증가하고 있는 해양사고는 기관고장, 충돌, 좌초, 화재 등 다양하게 발생하고 있다. 이러한 해양사고는 대형 인명사고의 위험이 있어 사전에 사고를 예방 하는 게 무엇보다 중요하다. 이를 위해서는 해양사고 발생을 사전에 예측하고 이에 대응할 수 있는 예측 체계가 요구된다. 본 연구에서는 과거에 발생한 데이터를 근거로 미래를 예측할 수 있는 마코프 체인 프로세스(Markov Chain Process)를 적용하여 해양사고 발생을 사전에 예측하기 위한 모델링을 제안한다. 제시된 모델링을 적용하여 미래 발생 가능한 해양사고 발생 확률을 산출하고 실제 발생한 빈도와 비교하였다. 또한 많이 사용되는 다른 예측 분석 방법과 비교하여 예측의 정확성을 측정하였다. 이를 통해 해양사고 발생에 관한 예측 체계를 마련하는데 하나의 확률 모형을 제안하였으며, 나아가 다양한 해양사고의 문제를 예측하는데 기여할 것으로 기대된다.

  • PDF

베이지안 네트워크를 활용한 기상학적 가뭄의 확률론적 예측 (Prediction of Probabilistic Meteorological Drought Using Bayesian Network)

  • 신지예;권현한;김태웅
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2015년도 학술발표회
    • /
    • pp.20-20
    • /
    • 2015
  • 최근 기후변화의 영향으로 전 세계적으로 홍수와 가뭄의 발생빈도가 증가하고 있다. 특히, 가뭄은 우리나라에서 겨울과 봄철을 중심으로 매년 발생되고 있다. 가뭄의 정확한 발생을 판단하기는 어려우나, 가뭄이 발생되면 그 진행속도는 홍수보다 느리기 때문에 초기에 가뭄의 발생가능성을 예측한다면 가뭄에 대한 피해를 줄일 수 있다. 따라서 최근 가뭄 예측에 대한 다양한 연구가 이루어지고 있다. 본 연구에서는 가뭄발생의 불확실성을 내포하기 위하여 Bayesian Network (BN) 모형과 SPI의 자기상관성을 바탕으로 가까운 미래의 가뭄 발생확률을 예측하는 방법을 제안하였다. BN은 변수들 간의 인과관계를 확률적으로 나타낼 수 있는 네트워크 모형으로, 자연현상에 대한 위험도 분석 및 의학 분야에서 질병추정을 위한 모형으로 활용되고 있다. 본 연구에서는 가까운 미래의 가뭄 예측을 위하여 APEC 기후센터(APEC Climate Center, APCC)에서 제공하는 다중모형앙상블(Multi-model Ensemble, MME) 강우예측 결과로 도출한 미래 SPI 및 과거 강우량 자료로 구축한 SPI를 부모노드로, 예측 SPI를 자식노드로 BN을 구축하였다. BN의 각각의 노드를 Gaussian 확률분포모형으로 가정한 뒤, Likelihood weighting 방법으로 주변사후분포확률(Marginal posterior distribution)을 추정하여 미래의 SPI의 발생확률을 계산하였다. 2008년부터 2013년의 BN 가뭄 예측값과 MME 강우예측 결과로 도출한 SPI를 실제 관측 강우량으로 산정한 SPI와 비교하였으며, BN이 실제 관측결과에 가까운 결과가 도출되었다. 본 연구에서는 BN을 활용하여 가까운 미래의 가뭄 발생가능성을 확률적으로 나타낼 수 있는 방법을 제시하였으며, 그 결과 가뭄상태별 가뭄 발생확률이 산정되었다.

  • PDF

WRF 예측강우를 활용한 홍수 및 침수예측에 관한 연구 (A Study on the Flood and Inundation Prediction using Forecasted Rainfall of the WRF Model)

  • 윤성심;트란앙푸옹;배덕효
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2010년도 학술발표회
    • /
    • pp.263-267
    • /
    • 2010
  • 최근 지구온난화, 엘니뇨 및 라니냐 등 지구환경 변화에 따른 기후변화의 영향으로 지구상의 많은 지역에서 집중호우가 발생하고 있으며 우리나라도 예외 없이 매년 되풀이되고 있다. 이로 인해 발생하는 홍수피해를 경감하기 위해서 홍수조절용 다목적 댐 건설과 같은 구조적 대책과 홍수를 사전에 예측할 수 있는 홍수예경보 시스템 구축과 같은 비구조적 대책의 마련이 필요하다. 일반적인 홍수예경보 시스템은 강우 관측치를 강우-유출 모형 및 수리해석 모형의 입력 자료로 하여 홍수량 및 홍수위를 계산하고 그 결과를 이용하여 운영된다. 그러나 집중호우와 같은 악기상 조건에서는 관측강우자료를 이용한 유출해석 결과로 홍수예경보 시스템을 운영 할 경우 예방 대응시간의 부족으로 인해 방재 효율성이 떨어지게 된다. 따라서 미래에 발생할 강우를 사전에 예측하고, 이를 효율적으로 유출 모형과 연계하여 홍수발생 이전에 홍수발생 가능성을 예측할 수 있는 홍수 모의시스템을 구축하는 것이 필요하다. 이를 위해 본 연구에서는 중규모 수치예보모형인 WRF 모형(Weather Research and Forecasting model)으로 모의된 2007년 태풍 '나리' 사상의 예측강우를 이용하여 유역평균강우를 산정하였으며, 산정된 예측강우를 도시유역유출모형인 SWMM과 2차원 침수모의가 가능하도록 개선한 CASC2D 모형에 활용하여 침수현상을 모의하였다. 실제 침수흔적과 모의된 결과의 비교를 통해 예측강우를 이용한 침수예측 및 홍수예보의 가능성을 평가한 결과, 과소추정된 예측강우의 영향으로 인해 모의된 침수심이 실제보다 작게 발생하였으나 침수발생 위치는 대체적으로 정확하게 모의하는 것으로 나타났다.

  • PDF

발생액의 미래 현금흐름 예측력 : 표본 내 예측 대 표본 외 예측 (The Predictive Ability of Accruals with Respect to Future Cash Flows : In-sample versus Out-of-Sample Prediction)

  • 오원선;김동출
    • 경영과정보연구
    • /
    • 제28권3호
    • /
    • pp.69-98
    • /
    • 2009
  • 본 연구는 Barth 외(2001)가 개발한 모형을 이용하여, 표본 내 예측과 표본 외 예측 상황에서의 발생액 및 발생액 구성요소들의 미래 현금흐름 예측력을 검토하는 것을 목적으로 한다. 이를 위해 우리나라의 유가증권 시장 과 코스닥 시장에 상장된 762개 기업의 1994년부터 2007년까지 14년간의 자료를 이용하여 발생액 및 발생액 구성요소의 미래현금 예측력을 검정하였다. 검정 결과 표본 내 예측력 검정에서는 Barth 외(2001)와 유사한 결과가 얻어졌다. 즉, 발생액을 여섯 가지의 구성요소로 추가로 분해한 모형의 표본 내 예측력이 비교 대상이 된 다른 세 가지 모형(회계이익 모형, 현금흐름 모형, 영업현금흐름 및 총발생액 모형)에 비해 우수하였으며, 여러 상황에서 무형자산 및 이연자산을 제외한 나머지 다섯 가지의 발생액 구성요소는 미래 현금흐름의 예측에 관하여 추가적인 정보 내용을 포함하는 것으로 밝혀졌다. 표본 외 예측에서는 상반되는 결과가 얻어졌다. 표본 외 예측력이 가장 뛰어난 모형은 영업현금흐름만을 독립변수로 포함하는 모형이었으며, Barth 외(2001)의 발생액 분해모형은 비교 대상인 네 가지의 모형 중 예측력이 가장 낮았다. 산업별 및 연도별로 수행된 추가 분석에서도 전반적으로 결과의 강건성을 확인할 수 있었다. 따라서 발생액과 발생액 구성요소가 미래 현금흐름의 예측에 유용한 정보를 전달한다는 Barth 외(2001)의 주장은 표본 외 예측에서는 성립한다고 할 수 없다. 이러한 결과는 미국 자료를 이용한 Lev 외(2005)의 결과와 일치하며, 미국과 한국의 회계기준 제정기관의 입장과 상반된다.

  • PDF

나이브베이스 분류자와 퍼지 추론을 이용한 적조 발생 예측의 성능향상 (Enhancing Red Tides Prediction using Fuzzy Reasoning and Naive Bayes Classifier)

  • 박선;이성로
    • 한국정보통신학회논문지
    • /
    • 제15권9호
    • /
    • pp.1881-1888
    • /
    • 2011
  • 적조란 유해조류의 일시적인 대 번식인 자연현상으로 어패류를 집단 폐사 시킨다. 적조에 의한 양식어업의 피해는 매년 발생하고 있다. 이 때문에 적조 발생을 미리 예측할 수 있으면 적조에 대한 피해를 최소화 시킬 수 있다. 적조발생 예측시 나이브베이스 분류자를 이용하면 좋은 예측결과를 얻을 수 있다. 그러나 나이브베이스를 이용한 결과는 단순한 발생 여부 만을 판별 할뿐 발생하는 적조가 어느 정도 증가 할지는 알 수 없다. 본 논문은 퍼지 추론과 나이브베이스 분류자를 이용한 새로운 적조발생 예측 방법을 제안한다. 제안방법은 적조 발생 예측의 정확률을 향상시키면서 적조생물 밀도의 증가율을 예측할 수 있다.

수도권지역의 통행발생모형의 검증 (회귀모형과 카테고리모형을 중심으로) (Improvement of Trip Generation Model in Seoul Metropolitan Area)

  • 김진자;이종호
    • 대한교통학회지
    • /
    • 제22권3호
    • /
    • pp.49-58
    • /
    • 2004
  • 본 논문에서는 서울시와 경기도에서 발표한 통근 및 등교통행발생 회귀모형과 ${\ulcorner}$1996년 교통센서스 조사${\lrcorner}$ 자료로 만든 통근통행발생률 및 등교통행발생률을 이용하여 2002년의 통근 및 등교통행발생량을 예측하였다. 그리고 ${\ulcorner}$2002년 교통센서스 조사${\lrcorner}$의 관측값과 비교하여 기존 통행발생모형의 개선방법을 제시하였다. 연구의 결과, 경기도의 통근통행발생회귀모형과 카테고리모형의 예측은 유사한 분포를 보이는 반면, 서울시의 통근통행발생 회귀모형으로 예측한 경우 인천광역시와 경기도에서 관측값보다 평균 40.16% 과대 예측되었다. 등교통행발생 예측값과 관측값이 서울시와 경기도 지역에서 비슷하게 예측되었다. 인천광역시 지역의 경우 경기도에서 발표한 회귀모형으로 예측한 값이 관측값보다 평균 79.71% 작게 예측되었다. 분석 결과 수도권에서의 장래 통근과 등교통행발생량 예측에서 카테고리분석법이 회귀분석법 보다 예측력이 우수한 것으로 나타났다. 우리나라에서는 장래 카테고리화된 자료의 부재로 카테고리 분석의 장래의 통행량 예측에 어려움이 따른다. 이에 카테고리분석을 적용하여 회귀분석의 취약점을 보완할 수 있는 것으로 판단된다.

큐 예측을 통한 인터넷 혼잡 제어 (Internet Congestion Control Using Queue Prediction)

  • 권성기;장봉석
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2003년도 가을 학술발표논문집 Vol.30 No.2 (3)
    • /
    • pp.301-303
    • /
    • 2003
  • 본 논문에서는 인터넷 혼잡제어를 위한 새로운 방법을 제안한다. 라우터 큐에 예측제어함수를 적용하여 미래의 혼잡상황을 예측하고 소스에게 미리 피드백을 수행하여 혼잡제어를 한다. 예측제어함수는 실제 큐와 예측된 큐의 오차를 계산하여 주기적으로 예측함수를 갱신하는 NLMS 방식의 예측제어함수를 적용한다. 피드백 정보의 전송지연으로 인한 혼잡상황 악화가 발생하기 전에 혼잡상황에 대응할 수 있으므로 라우터 버퍼 사용효율의 최적함을 유지할 수 있으며 버퍼 오퍼플로우로 발생하는 패킷의 손실을 최소화 할 수 있다. 혼잡상황을 야기하도록 과도한 트래픽을 생성하여 라우터에서 예측함수를 적용하는 경우와 단지 혼잡알림제어를 수행하는 경우를 비교하여 시뮬레이션을 수행하였다. 예측함수를 적용하는 경우는 시스템 성능효율을 증가시키며 라우터 버퍼 크기를 최적하게 사용할 뿐만 아니라 오퍼플로우가 발생하지 않았으나 예측함수를 적용하지 않고 혼잡알림제어를 수행하는 경우는 과도한 큐 크기와 오버플로우가 발생하였음을 시뮬레이션을 통해서 보인다.

  • PDF

초단기예측강우의 편의보정을 위한 G/R비 추정 (Estimation of G/R Ration for the Correction of Mean-Field Bias of Very-Short-Term Rainfall Forecasting)

  • 유철상;김정호;정재학;양동민
    • 한국방재학회:학술대회논문집
    • /
    • 한국방재학회 2011년도 정기 학술발표대회
    • /
    • pp.176-176
    • /
    • 2011
  • 전 세계적으로 국지성 집중호우의 발생이 증가하고 있다(건설교통부, 2007 ; 김광섭과 김종필, 2008). 특히, 국내의 경우 급속한 도시화에 의한 기상 변화의 영향으로 서울 및 중소도시 지역에 집중호우의 발생이 크게 증가하였고, 산악지역에 발생한 강도 높은 집중호우로 인하여 돌발홍수의 발생 또한 급증하고 있다. 이처럼 집중호우는 단시간에 큰 강우강도를 동반하여 돌발홍수를 유발할 뿐만 아니라 잦은 발생으로 인하여 막대한 재산 손실과 인명 피해를 초래하고 있다(유철상 등, 2007a). 현실적으로 이러한 이상호우에 의한 피해를 원천적으로 방지하는 것은 불가능하다. 그러나 어느 정도(accuracy) 이상의 강우예측이 전제된다면 피해의 규모를 크게 줄일 수 있는 것이 또한 사실이다(유철상 등, 2007b). 집중호우로 인한 피해의 주범은 수 시간이내에 발생하는 돌발홍수로서 이에 대한 피해를 최소화하기 위해서는 정확한 초단기예측 강우가 절실한 상황이다. 이에 본 연구에서는 초단기예측 강우의 보정을 목적으로 G/R 비를 예측하였다. 먼저, 강우의 임계치와 누적시간에 따른 G/R 비의 특성변화를 검토하여 G/R 비 산정방법을 개선하였다. 초단기예측 강우로 캐나다 McGill 대학교에서 개발된 MAPLE 예측강우를 사용하였으며, 이를 보정하기 위하여 칼만 필터를 이용하여 G/R 비를 실시간으로 예측하였다. 이러한 분석은 레이더 자료의 품질이 가장 양호할 것으로 판단되는 내륙지역을 대상으로 하였다. 결과적으로 강우의 임계치와 누적시간의 고려를 통해 안정화된 G/R 비의 산정이 가능하였으며, 이를 이용함으로서 예측 G/R 비의 정확성이 보다 향상되었다.

  • PDF

가강수량과 인공신경망을 이용한 중규모수치예보의 강수확률예측 개선기법 (Improving Probability of Precipitation of Meso-scale NWP Using Precipitable Water and Artificial Neural Network)

  • 강부식;이봉기
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2008년도 학술발표회 논문집
    • /
    • pp.1027-1031
    • /
    • 2008
  • 본 연구는 한반도 영역을 대상으로 2001년 7, 8월과 2002년 6월로 홍수기를 대상으로 RDAPS 모형, AWS, 상층기상관측(upper-air sounding)의 자료를 이용하였다. 또한 수치예보자료를 범주적 예측확률로 변환하고 인공신경망기법(ANN)을 이용하여 강수발생확률의 예측정확성을 향상시키는데 있다. 신경망의 예측인자로 사용된 대기변수는 500/ 750/ 1000hpa에서의 지위고도, 500-1000hpa에서의 층후(thickness), 500hpa에서의 X와 Y의 바람성분, 750hpa에서의 X와 Y의 바람성분, 표면풍속, 500/ 750hpa/ 표면에서의 온도, 평균해면기압, 3시간 누적 강수, AWS관측소에서 관측된 RDAPS모형 실행전의 6시간과 12시간동안의 누적강수, 가강수량, 상대습도이며, 예측변수로는 강수발생확률로 선택하였다. 강우는 다양한 대기변수들의 비선형 조합으로 발생되기 때문에 예측인자와 예측변수 사이의 복잡한 비선형성을 고려하는데 유용한 인공신경망을 사용하였다. 신경망의 구조는 전방향 다층퍼셉트론으로 구성하였으며 역전파알고리즘을 학습방법으로 사용하였다. 강수예측성과의 질을 평가하기 위해서 $2{\times}2$ 분할표를 이용하여 Hit rate, Threat score, Probability of detection, Kuipers Skill Score를 사용하였으며, 신경망 학습후의 강수발생확률은 학습전의 강수발생확률에 비하여 한반도영역에서 평균적으로 Kuipers Skill Score가 0.2231에서 0.4293로 92.39% 상승하였다.

  • PDF

랜덤포레스트를 이용한 대설피해액 예측 및 적용성 검토 (Prediction and Applicability of Snow Damage Using Random Forest)

  • 이형주;정건희
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2019년도 학술발표회
    • /
    • pp.399-399
    • /
    • 2019
  • 최근 세계적인 기상이변으로 국지적인 대설과 한파의 발생이력이 증가하고 있다. 특히 최근 2018년 1월 8일 미국에 100년만의 한파로 인해 체감온도가 영하 69도까지 떨어지고, 우리나라에서도 같은 해 2월 8일 제주도 폭설과 한파로 인해 교통이 마비되는 피해가 발생한 것으로 알려져 대표적인 겨울철 자연재해인 대설 피해에 대한 관심이 증가하고 있는 추세이다. 이로 인해 대설 피해예측 및 저감에 대한 연구가 다수 진행되고 있으나, 시 군 구 별 과거 피해이력이 적고, 피해가 발생한 지역과 관측소 사이의 거리가 멀어 정확한 피해예측이 어려운 상황이다. 따라서 본 연구에서는 대설피해에 영향을 미치는 변수들의 데이터를 수집한 뒤 랜덤포레스트를 이용하여 대설피해액을 범주형으로 구분하고, 어느 범주에 포함되는지 예측 및 적용성을 검토하였다. 현재 과거 피해자료의 부족, 과거 피해 발생 환경과 현재 피해 발생 환경의 차이, 대설로 인해 피해가 가장 많이 발생하는 비닐하우스 설계 기준의 변화 등으로 인해 예측 정확도가 높지 않았다. 따라서 대설피해 발생지역의 정확한 기상자료가 확보되고, 변수로 사용한 데이터의 최신화가 진행된다면 본 연구결과의 정확도 향상과 대략적인 대설피해규모 예측이 가능 할 것으로 기대된다.

  • PDF