• Title/Summary/Keyword: 발생변위

Search Result 2,038, Processing Time 0.031 seconds

Behavior of Closely-Spaced Tunnel According to Separation Distance Using Scaled Model Tests (축소모형실험을 통한 이격거리에 따른 근접터널의 거동)

  • Ahn, Hyun-Ho;Choi, Jung-In;Shim, Seong-Hyeon;Lee, Seok-Won
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.7
    • /
    • pp.5-16
    • /
    • 2008
  • Most of roadway tunnels have been constructed in the form of parallel twin tunnel in Korea. If parallel twin tunnel does not have a sufficient separation distance between tunnels, the problem of tunnel stability can occur. Generally, it is reported that tunnels are not influenced by each other when a center distance between tunnels is two times longer than tunnel diameter under the complete elastic ground and five times under the soft ground. In this study, the scaled model tests of closely-spaced parallel twin tunnel using homogeneous material are performed and induced displacements are measured around the tunnel openings during excavation. The influence of separation distance between tunnels on the behavior of closely-spaced tunnel is investigated. The experimental results are expressed by the induced displacement vector and progress of crack during construction and at failure. The results show that based on the analysis of induced displacement at the crown during construction, the additional displacement of the preceding tunnel induced by the excavation of following tunnel decreases as the separation distance between twin tunnel increases until the center to center distance is two times of tunnel diameter. Beyond this point, however, the additional displacement has become stabilized.

A Study on Reinforcement Method of Concrete Block for Direct Fixation Tracks on Serviced Light Rail Transit (공용중인 경전철 직결 궤도 콘크리트 도상블록의 보강 방안 연구)

  • Jung-Youl Choi;You-Song Kang;Dae-Hee Ahn;Jae-Min Han;Jee-Seung Chung
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.3
    • /
    • pp.633-640
    • /
    • 2023
  • In this study, numerical analysis was performed based on field investigation to derive an appropriate reinforcement method by analyzing the displacement behavior characteristics of concrete blocks generated in the direct fixation track on the bridges of the serviced light rail transit. The track of this study was a direct fixation track on a sharp curved track, and the problem of movement of the concrete blocks installed on the bridge deck in the longitudinal and lateral directions occurred. In this study, based on the finite element model using 3D solid elements, the behavior of the direct fixation track that could be occurred under operating load conditions was analyzed. In addition, the reinforcement effect of various reinforcement methods was analyzed. As a result of analyzing the lateral displacement before and after reinforcement, it was analyzed that the maximum lateral displacement after reinforcement under the extreme lateral wheel loads significantly decreased to about 3% (about 0.1mm) compared to before reinforcement. In addition, as a result of examining the generated stress of the filling mortar, bridge decks, and reinforcing bar, it was analyzed that all of them secured a sufficient safety factor of 2.6 or higher, and the optimal conditions for the reinforcement method were derived. Therefore, it is judged that the number of anchoring reinforcements and symmetrical anchor placement reviewed in this study will be effective in controlling the occurrence of lateral displacement of concrete blocks and securing the structural integrity of bridges and concrete blocks.

Comparison of Ground Movements in A Single Ground Layer and Multiple Ground Layers due to Nearby Tunnel Excavation (터널굴착으로 발생한 주변 단일지층 및 복합지층 지반에서의 지반변위에 대한 거동비교)

  • Son, Moorak;Yun, Jongcheol
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.3C
    • /
    • pp.167-174
    • /
    • 2010
  • In this study, numerical analysis has been performed to compare the ground movements in a single ground layer and multiple ground layers due to nearby tunnel excavation. The numerical analysis has been conducted in the different ground layer conditions considering different construction conditions (volume loss at excavation face), and the results of the maximum surface settlement and horizontal displacement have been compared considering the ground layer and construction conditions. In addition, the maximum surface settlement from the numerical analysis has been compared with the maximum settlement at tunnel crown considering the ground layer and construction conditions, and the maximum surface settlement has been also compared with the maximum horizontal displacement with the ground layer conditions. Besides, the volume loss($V_L$) at tunnel excavation face has been compared with the total surface settlement volume($V_s$) with the variation of ground layer condition. The results from the numerical analysis have been compared with field measurements and by this comparison it is believed that the numerical results in this study can be utilized practically in analyzing the nearby ground behavior in different ground layer and construction conditions due to tunnel excavation.

Effect of Embankment-Pile on Preventing Lateral Movement of Buried Pipe (성토지지말뚝의 지하매설관 측방이동 방지효과)

  • Kim, Jae-Hong;Hong, Won-Pyo
    • Journal of the Korean Geotechnical Society
    • /
    • v.30 no.12
    • /
    • pp.63-72
    • /
    • 2014
  • To observe the behavior of lateral deformation of buried pipe and the preventing effect of embankment piles against the lateral deformation, a series of full-scale field tests were performed on a reclaimed coastal area. A buried pipe was installed in the west coast undergoing reclamation and embankment was performed by three steps. Then vertical settlement and lateral displacement were measured by the settlement plate and the inclinometer. Embankment pile system were applied to prevent the lateral displacement of buried pipe. Heave of the buried pipe slightly happens during embankment and following settlement. Finally the behavior steadily converged. The preventing effect of the embankment pile was approximately two times stronger than non-reinforcement. Both settlement and lateral displacement appear to be bigger at upper ground and smaller at lower ground.

A Comparison of InSAR Techniques for Deformation Monitoring using Multi-temporal SAR (다중시기 SAR 영상을 이용한 시계열 변위 관측기법 비교 분석)

  • Kim, Sang-Wan
    • Korean Journal of Remote Sensing
    • /
    • v.26 no.2
    • /
    • pp.143-151
    • /
    • 2010
  • We carried out studies on InSAR techniques for time-series deformation monitoring using multi-temporal SAR. The PSInSAR method using permanent scatterer is much more complicate than the SBAS because it includes many non-linear equation due to the input of wrapped phase. It is conformed the PS algorithm is very sensitive to even PSC selection. On the other hand, the SBAS method using interferogram of small baseline subset is simple but sensitive to the accuracy of unwrapped phase. The SBAS is better method for expecting not significant unwrapping error while PSInSAR is more proper method for expecting local deformation within very limited area. We used 51 ERS-1/2 SAR data during 1992-2000 over Las Vegas, USA for the comparison between PSInSAR and SBAS. Both PSInSAR and SBAS show similar ground deformation value although local deformation seems to be detected in the PSInSAR method only.

Prototype Development and Experimentation to Improve the Seismic Performance of Curtain walls (커튼월의 내진성능 향상을 위한 시제품 개발 및 실험)

  • Min, Byoung jun;Won, Jeong hun;Jeon Jin woo;Kang, Hyun Wook
    • Korean Journal of Construction Engineering and Management
    • /
    • v.24 no.4
    • /
    • pp.14-24
    • /
    • 2023
  • The purpose of this study is to develop a prototype curtain wall with improved seismic performance and to verify the seismic performance by conducting an inter-floor displacement test. To this end, a prototype of the curtain wall was manufactured and a displacement similar to the earthquake load was induced, and then the damaged state of the curtain wall was checked. As a result of the first test, the frame and glass of the curtain wall were not damaged, but the Weather Sealant was partially damaged. As a result of the second test, there was no problem of glass breakage in seismic class (special), seismic class (I), seismic class (II), and AAMA 501.6. Through this experiment, the seismic performance of the curtain wall prototype was verified.

Estimation of Displacement Response from the Measured Dynamic Strain Signals Using Mode Decomposition Technique (모드분해기법을 이용한 동적 변형률신호로부터 변위응답추정)

  • Chang, Sung-Jin;Kim, Nam-Sik
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.4A
    • /
    • pp.507-515
    • /
    • 2008
  • In this study, a method predicting the displacement response of structures from the measured dynamic strain signal is proposed by using mode decomposition technique. Evaluation of bridge stability is normally focused on the bridge completed. However, dynamic loadings including wind and seismic loadings could be exerted to the bridge under construction. In order to examine the bridge stability against these dynamic loadings, the prediction of displacement response is very important to evaluate bridge stability. Because it may be not easy for the displacement response to be acquired directly on site, an indirect method to predict the displacement response is needed. Thus, as an alternative for predicting the displacement response indirectly, the conversion of the measured strain signal into the displacement response is suggested, while the measured strain signal can be obtained using fiber optic Bragg-grating (FBG) sensors. As previous studies on the prediction of displacement response by using the FBG sensors, the static displacement has been mainly predicted. For predicting the dynamic displacement, it has been known that the measured strain signal includes higher modes and then the predicted dynamic displacement can be inherently contaminated by broad-band noises. To overcome such problem, a mode decomposition technique was used. Mode decomposition technique estimates the displacement response of each mode with mode shape estimated to use POD from strain signal and with the measured strain signal decomposed into mode by EMD. This is a method estimating the total displacement response combined with the each displacement response about the major mode of the structure. In order to examine the mode decomposition technique suggested in this study model experiment was performed.

Behavior of wall and nearby tunnel due to deformation of strut of braced wall using laboratory model test (실내모형시험을 통한 흙막이벽체 버팀대 변형에 따른 흙막이벽체 및 인접터널의 거동)

  • Ahn, Sung Joo;Lee, Sang Duk
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.3
    • /
    • pp.593-608
    • /
    • 2018
  • If a problem occurs in the strut during the construction of the braced wall, they may cause excessive deformation of the braced wall. Therefore, in this study, the behavior of the braced wall and existing tunnel adjacent to excavation were investigated assuming that the support function of strut is lost during construction process. For this purpose, a series of model test was performed. As a result of the study, the earth pressure in the ground behind wall was rearranged due to the deformation of the braced wall, and the ground displacements caused the deformation of adjacent tunnels. When the struts located on the nearest side wall from the tunnel were removed, the deformation of the braced wall and the tunnel deformation were the largest. The magnitude of transferred earth pressure depended on the location of tunnel. The increase of the cover depth of tunnel from 0.65D to 2.65D caused the increase of the earth pressure by 25.6%. As the distance between braced wall and tunnel was increased from 0.5D to 1.0D, the transferred earth pressure increased by 16% on average. Horizontal displacements of braced wall by the removal of the strut tended to concentrate around the removed struts, and the horizontal displacement increased as the strut removal position is lowered. The tunnel displacement was maximum, when the cover depth of tunnel was 1.15D and the horizontal distance between braced wall and the side of tunnel was 0.5D. The minimal displacement occurred, when the cover depth of tunnel was 2.65D and the horizontal distance between braced wall and the side of tunnel was 1.0D. The difference between the maximum displacement and the minimum displacement was about 2 times, and the displacement was considered to be the largest when it was in the range of 1.15D to 1.65D and the horizontal distance of 0.5D.

Field Measurements of Ground Movements Around Tunnel (현장계측에 의한 터널주변지반의 변위연구)

  • 홍성완;배규진
    • Geotechnical Engineering
    • /
    • v.1 no.2
    • /
    • pp.41-54
    • /
    • 1985
  • Generally, ground settlements and lateral displacements are accompanied by underground excavation associated with open-cut or tunnling. These ground movements cause a harmful influence upon nearby super.structures and sub-structures. Occasionally, the ground movements may pose serious problems as the function of the nearby structures may be disrupted. Therefore, prior to the subway construction in an urban area, it is necessary to identify the causes of ground settlements and estimating the extent St the magnitude of ground movements since any potential damage to the nearby structures such as gas lines, water mains, high buildings and cultural assets must be assessed. The research was performed mainly on ground movements such as surface settlements, lateral displacements, subsurface settlements and crown settlements to predict the maximum settlement and settlement zone, and to identify the causes of ground settlements in NATM sections of Busan subway. As a result, it was found that lateral distribution of settlements could be approximated reasonably by a Gaussian normal probability curve and longitudinal distribution of settlements by a cumulative Gaussian probability curve, and that the early closure of temporary invert was very important to minimize ground settlements.

  • PDF

Back-analysis Technique in Tunnelling Using Extended Bayesian Method md Relative Convergence Measurement (확장 Baysian 방법과 상대변위를 이용한 터널 역해석 기법)

  • Choi Min-Kwang;Cho Kook-Hwan;Lee Geun-Ha;Choi Chung-Sik
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.3
    • /
    • pp.99-108
    • /
    • 2005
  • One of the most important and difficult tasks in designing underground structure is the estimation of engineering properties of the ground. The main purpose of this study is to propose a new back-analysis technique in tunnelling to estimate geotechnical parameters around a tunnel. In this study, the Extended Bayesian Method, which appropriately combines objective information with subjective one, is adopted to optimize engineering parameters. By using only relative convergence data measured during tunnelling as input values in back-analysis, inevitable errors in absolute convergence estimation are excluded and 3-dimensional numerical analysis is applied to consider a trend of relative convergence occurrence. Finally, 3-dimensional back-analysis technique using relative convergence is proposed and evaluated using a hypothetical site.