• Title/Summary/Keyword: 발사 소음

Search Result 71, Processing Time 0.022 seconds

Determination excitation spectrum for the sinusoidal vibration test of the small satellite launch vehicle (소형 위성 발사체의 정현파 진동 시험을 위한 가진 입력 결정)

  • Park, S.H.;Youn, S.H.;Seo, S.H.;Jeong, H.K.;Jang, Y.S.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.193-196
    • /
    • 2006
  • Vibration overtests have been common problems in aerospace industry. A test item can be overtested at its resonances when it is excited by the traditional spectrum enveloping peaks in the field acceleration spectrum. This paper introduces the method of modifying the excitation specification to alleviate the overtesting problem. A vibration analysis was performed to estimate interface forces and acceleration responses. A finite element model that was verified by an extensive modal test enabled us to shape the acceleration input accurately The produced notched input will be used in the sinusoidal vibration test of the small satellite launch vehicle.

  • PDF

The Effect of Pyro Shock on Canister with Composite Sandwich Panel (복합재 샌드위치 패널 발사관의 폭발충격 영향도 분석)

  • Choi, Wonhong
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.26 no.6_spc
    • /
    • pp.667-673
    • /
    • 2016
  • Canister with composite sandwich panel has been suggested owing to its higher stiffness and strength over a weight for square shaped canisters. The pyro shock induced by a short time explosion inside a canister is generally considered to be the most severe source of load affecting on the entire structure. Therefore, in this study, the approach and modeling method to identify the effect of pyro shock on canister with composite sandwich panel in a numerical way were mainly discussed. Moreover, the verification was implemented through comparison with test results.

Launch Environment Requirements for Earth Observation Satellite (지구관측위성의 발사환경시험 요구조건)

  • Kim, Kyung-Won;Kim, Sung-Hoon;Kim, Jin-Hee;Rhee, Ju-Hun;Hwang, Do-Soon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.747-750
    • /
    • 2004
  • After launching, spacecraft is exposed to extreme environments. So spacecraft should be tested after design/manufacture to verify whether components can be operated functionally. Acceleration transferred from launch vehicle to spacecraft produces quasi-static load, sine vibration and random vibration. Random vibration is also induced by acoustic vibrations transferred by surface of spacecraft. And shock vibration is produced when spacecraft is separated from launch vehicle. To verify operation of spacecraft under these launch environments, separation shock test, sine vibration test, acoustic vibration test and random vibration test should be performed. This paper describes these launch environment test requirements.

  • PDF

Drawing up a Noise Map under Launch Environment through Analyzing Jet Noise of Guided Weapon (유도무기의 제트소음 분석을 통한 발사환경에서의 소음지도 작성)

  • Kim, Sang-Min;Park, Woong;Ha, Jae-Hyoun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2011.10a
    • /
    • pp.163-168
    • /
    • 2011
  • Noise map is drawn up under launch environment through analyzing jet noise of guided weapon in this research. This has an important significance in terms of having an opportunity to look at influence of noise which is caused by guided weapon in the surrounding environment. In this paper, the magnitude of jet noise that was measured by using microphone and the result of numerical analysis that was gained by using ENPro which is environment noise prediction program are shown. At this point estimation of noise source was based on ISO 9613. Finally noise map derived from results mentioned above will become useful material when setting safety guide for protecting hearing loss of operator of weapon system in the future.

  • PDF

음향환경시험용 음향 모듈레이터 구조 및 음향특성분석

  • Eun, Hui-Gwang;Im, Jong-Min;Jeon, Jong-Hyeop;Lee, Dong-U;Mun, Gwi-Won
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.2
    • /
    • pp.133.2-133.2
    • /
    • 2012
  • 위성체는 발사체에 탑재되어 임무수행을 위한 우주설정궤도로 이동하게 된다. 이 과정중 발사체에서 분사되는 방대한 양의 추진제, 고속 추진에 따른 페어링 외기의 동압 변화등은 위성체가 안치되어 있는 페어링 내부에 수천 Hz의 주파수 대역에 걸쳐 130 ~ 150 dB에 이르는 음장을 형성한다. 이러한 페어링 내부의 고에너지 음장은 위성체 구조물 및 탑재물의 기계적인 진동을 유발하여, 물리적인 파손을 일으키거나 주요 기능에 중대한 결합을 유발 시킬 수 있다. 이에 따라 위성체는 개발단계에서부터 소음환경에 대한 검증시험을 수행하게 된다. 지상에서의 검증시험은 잔향실과 음향 모듈레이터로 구성되어 있는 음향챔버 시스템을 이용하여 수행된다. 음향 모듈레이터는 기화된 고압의 대용량 질소가를 이용하여 발사체에서 생성되는 고 에너지의 소리를 발생하게 된다. 본 논문에서는 음향환경 시험용 음향 모듈레이터에 대한 분석, 시험을 바탕으로 작동 원리 및 음향특성 분석을 수행하였다.

  • PDF

항공우주분야의 진동제어 연구동향

  • 김유단
    • Journal of KSNVE
    • /
    • v.9 no.1
    • /
    • pp.5-13
    • /
    • 1999
  • 1980년대 이르러서 인공위성은 통신위성. 탐사위성, 우주망원경, GPS 위성 등 그 역할이 전문화되고 다양해지고 있다. 이에 따라 인공위성의 안테나, 태양전지판 등의 구조물이 대형화되고 복잡해지는 추세에 있으나, 발사경 비의 절감을 위하여 위성체의 무게를 줄여야 하는 필요성 이 절실해졌으며 이에 따라 얇고 가벼운 재료를 사용하게 되었다. 또한 우주에서의 항구적이고 효율적인 연구수행을 위하여 러시아의 미르(Mir)에 이어서 새로운 국제우주정거장의 건설을 위한 연구가 계속적으로 수행되고 있다.(중략)

  • PDF

Design Consideration and Verification on Random Vibration of Satellite Electronic Equipment while Launching (발사시 야기되는 랜덤진동을 고려한 위성체 전장품 설계 및 검증에 대한 연구)

  • 김홍배;서현석
    • Journal of KSNVE
    • /
    • v.10 no.6
    • /
    • pp.971-976
    • /
    • 2000
  • High level random vibration environments induced while launching of spacecraft can damage sensitive electronic equipment, unless the equipment is properly packaged. Thus careful consideration on the launch environment, especially for high level random vibration, is required in the design stage of electronic equipment of spacecraft. This paper describes the development process of Solar Array Regulator for KOMPAT-2, which is designed and tested by Korean engineers. Both analytical and experimental techniques are introduced in this paper.

  • PDF

A study on in-flight acoustic load reduction in launch vehicle fairing by FE-SEA hybrid method (FE-SEA 하이브리드 기법을 이용한 비행 중 발사체 페어링 내부 음향하중 저감에 관한 연구)

  • Choi, Injeong;Park, Seoryong;Lee, Soogab
    • The Journal of the Acoustical Society of Korea
    • /
    • v.39 no.4
    • /
    • pp.351-363
    • /
    • 2020
  • Launch vehicles are subject to airborne acoustic loads during atmospheric flight and these effects become pronounced especially in transonic region. As the vibration due to the acoustic loads can cause malfunction of payloads, it is essential to predict and reduce the acoustic loads. In this study, a complete process has been developed for predicting airborne vibro-acoustic environment inside the payload pairing and subsequent noise reduction procedure employing acoustic blankets and Helmholtz resonators. Acoustic loads were predicted by Reynolds-Averaged Navier-Stokes (RANS) analysis and a semi-empirical model for pressure fluctuation inside turbulent boundary layer. Coupled vibro-acoustic analysis was performed using VA One SEA's Finite Element Statistical Energy Analysis (FE-SEA) hybrid module and ANSYS APDL. The process has been applied to a hammerhead launch vehicle to evaluate the effect of acoustic load reduction and accordingly to verify the effectiveness of the process. The presently developed process enables to obtain quick analysis result with reasonable accuracy and thus is expected to be useful in the initial design phase of a launch vehicle.