• Title/Summary/Keyword: 발광박테리아

Search Result 33, Processing Time 0.021 seconds

The Functions of the Riboflavin Genes in the lux Operon from Photobacterium Species (Photobacterium Species의 lux 오페론에서 발견된 Riboflavin 생합성 유전자들의 기능)

  • 이찬용;임종호
    • Korean Journal of Microbiology
    • /
    • v.38 no.3
    • /
    • pp.173-179
    • /
    • 2002
  • The functions of riboflavin synthesis genes ( ribI,II,III and IV) found immediately downstream of luxG in the lux operon from Photobacterium species were identified using the biochemical and genetical analysis. The ribI-III gene codes for protein corresponding to that coded by the second (riboflavin synthase), third (3,4-dihydroxy 2-butanone 4-phosphate synthase/GTP cyclohydrolase II) and fourth (lumazine synthase) gene, respectively, of Bacillus subtilis rib operon with the respective gene procuct sharing 41-50% amino acid sequence identity. Unexpectedly, the sequence of the ribIV product of Photobacterium phosphoreum does not correspond in sequence to the protein encoded by the fifth rib gene of Bacillus subtilis. Instead the gene (ribIV) codes for a polypeptide similar in sequence to GTP cyclohydrolase II of Escherichia coli and the carboxy terminal domain of the third rib gene from Bacillus subtilis. Complementation of Escherichia coli riboflavin auxotrophs showed that the function of the gene products of ribII and ribIV are DHBP synthase and GTP cyclohydrolase II, respectively. In addition the experiment, showing that increase in thermal stability of riboflavin synthase coded by ribIon coexpression with ribIII, provided indirect evidence that the latter gene codes for lumazine synthase.

Establishment of Standard Methods for Marine Ecotoxicological Test (해양생태독성평가를 위한 표준시험방법 개발에 관한 연구)

  • Park, Gyung-Soo;Lee, Seung-Min;Han, Tae-Jun;Lee, Jung-Suk
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.13 no.2
    • /
    • pp.106-111
    • /
    • 2008
  • Six standard methods for marine ecotoxicological tests were established(or applicated) using marine decomposer, primary producers and consumers. Development processes referred to the standard methods established by USEPA(United States Environmental Protection Agency), international organizations and European methods. However, the standard test species were selected among the domestic species generally found in the Korean waters and sediments. The test methods provide the culture/maintenance of test species, test methods, reproducibility and quality acceptance criteria etc. A total of nine test species were designated including bioluminescent bacteria(Vibrio fischeri), diatom(Skeletonema costatum), seaweed(Ulva pertusa), rotifer(Brachionus plicatilis), benthic copepod(Tigriopus japonicus), benthic amphipods(Mandibulophoxus mai, Monocorophium acherusicum), and fishes(Oryzias latipes, Paralichthys olivaceus). These test species represent the decomposer, primary producer and consumers in marine trophic system in Korean coastal ecosystems, and we recommend the "battery test" including at least one species from the each trophic level for marine ecotoxicological test.

Marine Ecotoxicological Evaluation on HNS Spill Accident : Nitric Acid Spill Case Study (HNS 유출사고가 해양생물에 미치는 생물독성 영향평가 : HNO3 유출사고 대상)

  • Kim, Tae-Won;Kim, Young Ryun;Jo, So Eun;Son, Min Ho;Lee, Moonjin;Oh, Sangwoo
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.21 no.6
    • /
    • pp.655-661
    • /
    • 2015
  • This study intends to evaluate the effect of nitric acid($HNO_3$) spill accidents on the marine ecosystem, while $HNO_3$ is known as one of the typical HNS. For this purpose, we performed (1) the growth inhibition test by using phytoplankton(Skeletonema costatum), (2) acute and chronic toxicity test by using invertebrate(Brachionus plicatilis and Monocorphium acherusicum), (3) fish(Cyprinodon variegatus) and (4) bacteria(Vibrio fischeri). In these tests, we observed the (1) pH changes induced by the nitric acid spill and (2) changes in nitrate($NO_3$) concentration disassociated from nitric acid after the accident, respectively. The toxicity test result on pH changes induced by $HNO_3$ shows that the no observed effect concentration(NOEC), lowest observed effect concentration(LOEC) and 50 % effect concentration($72h-EC_{50}$) values of M. acherusicum are pH 7 (0.3 mM), pH 5(1.1 mM) and pH 5.2(1.4 mM), respectively, indicating that M. acherusicum is the most sensitive species. The chronic toxicity test (population growth rate test) on $NO_3{^-}$ of B. plicatilis show that the NOEC, LOEC and $96h-EC_{50}$ are 5.9 mM, 11.8 mM and 32.6 mM, respectively, indicating that B. plicatilis is the most sensitive species. In conclusion, toxic effecst on the marine organism caused by the nitric acid spill accident is determined to be so slightly except for the most adjacent area of the ship in pH scale and such concentration of nitrate, to the extent of directly influencing the survival and reproduction of the marine organism, is determined practically not to be applicable in the typical accidents in the sea.