• Title/Summary/Keyword: 반폐쇄성해역

Search Result 31, Processing Time 0.023 seconds

Environmental Occurrence of Persistent Organochlorines in Gwangyang Bay (광양만내 지속성유기염소계화합물의 잔류농도 및 분포특성)

  • 홍상희;임운혁;심원준;오재룡
    • Korean Journal of Environmental Biology
    • /
    • v.22
    • /
    • pp.30-37
    • /
    • 2004
  • Peysistent oyganochlorine compounds (OCs) weve determined in sediments and bivalves from Gwangyang Bay. The concentrations of ∑PCB, ∑DDT, ∑HCH and ∑CHL in sediments were in the range of f 2.25∼11.4 ng g$\^$-1/, 0.16∼1.16 ng g$\^$-1/, nd∼0.51 ng g$\^$-1/, and 0.05∼0.79 ng g$\^$-1/, respectively. The overall OCs concentrations in sediments were below the effect range -median (ER-M) values toy benthic organisms suggested by NOAA (1991). Levels of PCB compounds a re relatively lower than other industrialized bays (Pusan Bay, Ulsan Bay, and Youngil Bay). OCs accumulated in bivalves were higher than those in sediments. In bivalves, the concentration ranges of ∑PCB, ∑DDT, ∑HCH and ∑CHL were 9.97∼31.7 ng g$\^$-1/, 7.54∼22.6 ng g$\^$-1/, 0.49∼2.0 ng g$\^$-1/, and 0.82∼7.32 ng g$\^$-1/, respectively. Relatively high PCB concentrations in both environmental matrices are found at the inner bay than the outer part, indicating that the sources of PCBs were located inside the bay. DDT compound showed relatively high concentrations in the vicinity of the mouth of river and urban area, whereas other organochlorine pesticides show homogeneous distributions over the bay. Homologue profile of PCB compounds shows that low-chlorinated congeners (especially, di-, tyi- and tetra-) are abundant in Gwangynng Bay, which is diferent from other areas in Korea.

Annual cycles of nutrients and dissolved oxygen in a nutrient-rich temperate coastal bay, Chinhae Bay, Korea (영양염류가 풍부한 온대 해역 내만(한국, 진해만)에서의 영양염류와 용존산소의 연변화)

  • HONG, GI HOON;KIM, KYUNG TAE;PAE, SE JIN;KIM, SUK HYUN;LEE, SOO HYUNG
    • 한국해양학회지
    • /
    • v.26 no.3
    • /
    • pp.204-222
    • /
    • 1991
  • The annual cycles of plant major nutrients and dissolved oxygen in a nutrients-rich semi-enclosed coastal inlet, chinhae Bay, of the southern coast of the Korean Peninsula are first presented. The water column of the bay is stratified during summer (April-late September) and well0mixed during winter (October-March). During the summer stratification period, dissolved oxygen contents exceed 400uM in the surface but diminish to less than 50uM in the near bottom waters, which often results in an anoxic environment in the inner part of Chinhae Bay. After the breakdown of the stratification in October, dissolved oxygen concentration remains undersaturated until February. The evidence of allochthonous input of N-nutrients throughout the year is readily seen in the water column: however. crude budget calculations show that the nutrients are efficiently utilized within the bay ecosystem, and that export of the nutrients from the bay to the shelf must be negligible. There is no sign of the enrichment of the nutrients in the water column. The eutrophication phenomenon sensu stricto is not observed in chinhae Bay. Using the standing stock of dissolved oxygen and estimation of the oxygen fluxes across the air-sea boundary, a benthic oxygen respiration rate during winter is estimated conservatively at 21-24 mmol Cm/SUP -2/d/SUP -1/. this oxygen respiration rate accounts for about 20% of the total phytoplankton production in winter.

  • PDF

Distributional Characteristics of Escherichia coli and Water Pollution in Gwangyang Bay and Jinhae Bay, Korea (광양만과 진해만에서 대장균 Escherichia coli분포와 수질오염 특성)

  • Son, Moon-Ho;Baek, Seung-Ho;Joo, Hae-Mi;Jang, Pung-Guk;Kim, Young-Ok
    • Korean Journal of Environmental Biology
    • /
    • v.29 no.3
    • /
    • pp.162-170
    • /
    • 2011
  • In order to assess the inorganic and organic pollutents characteristics in marine water, we investigated COD (Chemical Oxygen Demand), Chlorophyll a and Escherichia coli during four seasons at 20 stations of Gwangyang Bay and at 23 stations of Jinhae Bay, Korea. The bay is divided into three zones in Gwangyang and four zones in Jinhae respectively, based on the pollutent levels. In Gwangyang Bay, the high concentration (mean 4.7 mg $L^{-1)$) of COD was recorded during spring season at Zone I, which can be characterized as a semi-enclosed eutrophic area (St. 1~9). Also, Chl. a concentrations were high at Zone I (mean 14.0 ${\mu}g\;L^{-1}$). The colony of E. coli were detected during summer season at Zone II, which is influenced by Seomjin River water. The E. coli may have been entered from the river water in a large pulse during rainy season. On the other hand, E. coli was kept low levels during four seasons at the Zone III, which is influenced indirectly by surface water currents from offshore of the bay. In Jinhae Bay, the high COD and Chl. a were shown during all seasons at Zone I, which is characteristed by semi-enclosed eutrophic area of Masan and Haengam bays. The Zone I also had been shown relatively high E. coli concentration in all seasons. In constrast, other three zones did not show seasonal characteristics of the E. coli concentrations. The present study suggests that E. coli concentrations can be significantly elevated in eutrophic semi-enclosed area.

A Study on the Inflowing Pollution Load and Material Budgets in Hampyeong Bay (함평만의 유입오염부하량 및 물질수지에 관한 연구)

  • Kim, Jong-Gu;Jang, Hyo-Sang
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.22 no.1
    • /
    • pp.1-10
    • /
    • 2016
  • In this paper, an analysis of the inflowing pollution load of the rivers in Hampyeong bay showed the average organic matter pollution loads of BOD, COD, and TOC to be 79.7 kg-BOD/day, 144.06 kg-COD/day, and 93.0 kg-TOC/day, respectively. The inflowing organic matter pollution load was the heaviest in Sonbul dike, followed by Jupo bridge and Yangman complex. With regard to season, the load characteristics were outstanding in July, the rainy period in the summer. The average inflowing pollution loads of nutrients were 20.9 kg-DIN/day, 17.1 kg-DIP/day, 148 kg-TN/day, and 37.4 kg-TP/day A comparison of the inflowing nutrients loads for each river showed the load to be the heaviest in Yangman complex, followed by Baegok bridge and Jupo bridge. In the experiment on the material budgets of Hampyeong bridge conducted using a box model, the detention time of fresh water was found to be 52.4 days, with the bay displaying the characteristics of a so dissolved inorganic nitrogen (DIN) in the nutrients material budgets, ${\Delta}DIN$ values were found to be negative, indicating the tendency of consumption and open sea leak by photosynthesis to be higher than the nitrogen that flowed in. As for dissolved inorganic phosphorus (DIP), ${\Delta}DIP$ showed positive values, indicating a tendency for accumulation as the supply through organic matter decomposition, elution load of sediments, and inflowing load of the river turned out to be higher than the consumption by phytoplankton and outflow to open sea.

Spatial and Vertical Distribution of Polycyclic Aromatic Hydrocarbons in Sediment of the Shipyard Area in Gohyeon Bay (고현만 조선소 주변해역 퇴적물내 다환방향족탄화수소의 시공간적 분포특성)

  • Park, Pan-Soo;Kim, Nam-Sook;Yim, Un-Hyuk;Shim, Won-Joon;Kim, Gi-Beum
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.12 no.2
    • /
    • pp.68-74
    • /
    • 2009
  • Polycyclic aromatic hydrocarbons (PAHs), one of ubiquitous organic pollutants in marine environments, are major toxic components of petroleum and are produced during the incomplete combustion of organic materials. As shipyards are located inside of natural or artificial semi-enclosed bay, even a relatively weak environmental disturbance by ship-building activity can cause severe damage to marine ecosystem in the bay. Many studies of pollution in shipyard area have been focused on the antifouling agent, like tributyltin. This study aimed to investigate the effect of ship-building activity on PAH contamination. Total PAHs concentration was higher nearby and inside shipyard area than outside, implying that shipyard could be one of major source area of PAH contamination to pose harmful effects to surrounding environments. Through PAH profile and source recognition index, the source of PAHs inputs in this area was estimated to originate from both petrogenic and pyrogenic origin. PAH levels showed a significant correlation with total butyltins, indicating that ship-building activity influenced PAH concentration and distribution. Vertical distribution of PAHs historically confirmed the correlation between shipbuilding activity and PAHs contamination.

  • PDF

Annual Change and C:N:P ratio in Particulate Organic Matter in Chinhae Bay, Korea (한국진해만 입자유기물 함량과 C:N:P 비의 연변화)

  • LEE, PIL-YONG;KANG, CHANG-KEUN;PARK, JONG-SOO;PARK, JOO-SUCK
    • 한국해양학회지
    • /
    • v.29 no.2
    • /
    • pp.107-118
    • /
    • 1994
  • An investigation of the annual change and C:N:P ratio in particulate organic matter (POM) in Chinhae Bay, a semi-enclosed bay of the southern coast of Korean Peninsula, was carried out for a period of 12 months between January and December, 1993. The concentrations of POM have a broad range: 198∼4,416 ugC/l, 24∼792 ugN/l and 4.5∼69.0 ugP/l, Marked seasonal changes of POM, particularly particulate organic carbon (POC) and nitrogen (PON), were observed in the surface water. Generally, the concentration of POM peaks in summer. The C:N:P composition ratio of particulate organic matter, which is high in summer, also shows a seasonal change. The C:N assimilation ratio is constant at 6.53, which is consistent with the Redfield ratio. The significant linear relationship between POM and chlorophyll-a in the surface water during the survey period (except for January and February) and the C:N ratio suggest that the concentration of POM is controlled by phytoplankton biomass. POM peaks in summer, a period characterized by high freshwater input and the strong stratification, as a result of the intense proliferation of phytoplankton by a large amount of nutrient loading from the tributaries. On the other hand, the high C:P and N:P ratios in summer indicate that P is limited for phytoplankton growth owing to N-enrichment from a high input of freshwater with a high dissolved inorganic N:P ratio.

  • PDF

Daily Variation of Particulate Organic Carbon in Wonmun Bay on the South Coast of Korea in Late Summer (늦여름 원문만 굴양식장 입자유기탄소의 일변동)

  • KANG Chang-Keun;LEE Pil-Yong;KIM Pyoung-Joong;CHOI Hee-Gu
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.26 no.3
    • /
    • pp.279-287
    • /
    • 1993
  • Daily variation of particulate organic carbon(POC) and some factors controlling its level were examined for a semi-enclosed bay(Wonmun Bay, south coast of Korea), in which a lot of suspended oyster culture farms existed, in September, 1992. Observations were made at hourly interval. In spite of the relatively short survey period, strong short-term variation of POC concentration could be observed. Concentrations of POC were the range of $58{\sim}582{\mu}g/l(average 272{\mu}g/l)$ and their variation pattern was similar to those of chlorophyll a with the range of $0.90{\sim}7.25{\mu}g/l(average 3.35{\mu}g/l)$. The low C/N ratios also suggested that marine microalgae was a major component of POC for Wonmun Bay. Primary production, average $1.97\;gC/m^2/day$, was the main source of POC beacuse the supply of POC via freshwater input and exchange with the outer part of the bay was little. Oyster population also excreted a small amount of POC. About $40\%$ of produced POC was decomposed heterotrophically. Another important cause for the fluctuation of observed POC was tidal cycle. Considerable POC, which amounted $37\%$ of produced POC, was lost from the bay due to flushing by tidal cycle. It was also calculated that about $16\%$ was transported onto the sediment. It seemed that a part of POC was consumed by oyster and other heterotrophs.

  • PDF

Estimation of Oxygen Consumption Rate and Organic Carbon Oxidation Rate at the Sediment/Water Interface of Coastal Sediments in the South Sea of Korea using an Oxygen Microsensor (산소 미세전극을 이용한 남해연안 퇴적물/해수 계면에서 산소소모율 및 유기탄소 산화율 추정)

  • Lee, Jae-Seon;Kim, Kee-Hyun;Yu, Jun;Jung, Rae-Hong;Ko, Tae-Seung
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.8 no.4
    • /
    • pp.392-400
    • /
    • 2003
  • We used an oxygen microelectrode to measure the vertical profiles of oxygen concentration in sediments located near point sources of organic matter. The measurements were carried out between 13th and 17th May, 2003, in semi-closed bay and coastal sediments in the central part of the South Sea. The measured oxygen penetration depths were extremely shallow and ranged from 1.30 to 3.80 mm. This suggested that the oxidation and reduction reactions in the early diagenesis should be studied at the mm depth scale. In order to estimate the oxygen consumption rate, we applied the one-dimension diffusion-reaction model to vertical profiles of oxygen near the sediment/water interface. Oxygen consumption rates were estimated to be between 10.8 and 27.6 mmol O$_2$ m$\^$-2/ day$\^$-1/(average: 19.1 mmol O$_2$ m$\^$-2/ day$\^$-1/). These rates showed a positive correlation with the organic carbon of the sediments. The corresponding benthic organic carbon oxidation rates calculated using an modified Redfield ratio (170/110) at the sediment/water interface were in the range of 89.5-228.1 mg C m$\^$-2/ day$\^$-1/(average: 158.0 mg C m$\^$-2/ day$\^$-1/). We suggest that these results are maximum values at the presents situation in the bay because the sampling sites were located near point sources of organic materials. This study will need to be carried out at many coastal sites and throughout the seasons to allow an understanding of the mechanisms of eutrophication e.g. the spatial distribution of oxygen consumption within the oxic zone and hypoxic conditions in the coastal sea.

A Study Seeking the Practical Implementation of the Yellow Sea Large Marine Ecosystem Project (황해광역해양생태계 프로젝트의 실효성 확보에 관한 연구)

  • Kim, Jin-kyung;Kown, Suk-jae;Lee, Sang-il
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.7
    • /
    • pp.987-994
    • /
    • 2021
  • The Yellow sea, as described in article 123 of UNCLOS, is semi-enclosed sea surrounded by the Republic of Korea, the People's Republic of China and North Korea. In addition, the Yellow Sea is one of the 66 large marine ecosystems as it contains large amounts of marine resources. According to article 194 of UNCLOS, states should be aware of rights and duties with respect to the protection and preservation of the marine environment to be engaged with countries directly as regional entity or indirectly. Therefore, the legal blank is urgent in terms of trans-boundary environmental pollutant issues. The UNDP has conducted a project called Yellow Sea Large Marine Ecosystem (YSLME) which has reached the 2nd phase. The project has some notable achievements, namely performing joint activities on analysis of diagnostic trans-boundary issues in collaboration with China and South Korea, developing a strategic action plan based on TDA, and establishing regional strategic action plan. However, on the other hand, the project could not reflect the full participation of North Korea as a state party. As a result, the project has a limitation on effective implementation of RSAP. Therefore, this study focuses on the suggestion of a legally-binding trilateral treaty as a blue print for the next, 3rd phase of the project. By analyzing the best practice of the Wadden Sea Trilateral Treaty case, the study verifies the validity of legislative measures on establishing and managing a legally-binding trilateral YSLME Commission. By suggesting a three phase treaty, incorporating a joint declaration by establishing the commission, the signing of the treaty, and formulating an umbrella convention and implementation arrangement, the study expects to guarantee the consistency and sustainability of the trilateral treaty regardless of political issues pertaining to North Korea.

The Geochemical Characteristics and Environmental Factors on the Marine Shellfish Farm in Namhae-po Tidal Flat of Taean (태안 남해포 갯벌 패류양식해역의 환경특성)

  • Choi, Yoon Seok;Park, Kwang Jae;Yoon, Sang Pil;Chung, Sang Ok;An, Kyoung Ho;Song, Jae Hee
    • The Korean Journal of Malacology
    • /
    • v.29 no.1
    • /
    • pp.51-63
    • /
    • 2013
  • To assess the effect of environmental factors on the sustainability of cultured production shellfish, we investigated the habitat characteristics of tidal flat (Namhae-po in Taean). We measured the physiochemical parameters (temperature, salanity, pH, dissolved oxygen and nutrients) and the geochemical characteristics (chemical oxygen demand, ignition loss, C/N ratio and C/S ratio). Surface sediments were collected from several site of tidal flat to examine the geochemical characteristics of both the benthic environment and heavy metal pollution. The grain size for research area of tidal flat were similar at the ratio of silt and clay in comparison with the other site of it. The C/N ratio was more than 5.0, reflecting the range arising from the mix of marine organism and organic matter. The C/S ratio (about 2.8) showed that survey area had anoxic or sub-anoxic bottom conditions. The enrichment factor (Ef) and index of accumulation rate (Igeo) of the metals showed that those research areas can be classified as heavily polluted, heavily to moderately polluted, or more or less unpolluted, respectively. Adult surf clam (Mactra veneriformis) density was highest at St. 2 (middle part of the Namhae-po), on the other hand, surf clam spat density was highest at St. 3 (lower part of the Namhae-po). Heavy rain, terrigenous suspended clay with fresh water from neighboring agricultural land, and severe high air temperature during summer could be thought as detrimental causes of spat and adult mortality in Namhae-po tidal flat. We suggested that the growth of shellfish in the tidal flat was effected by the various environmental conditions, so an improvement in the cultured method was needed.