• Title/Summary/Keyword: 반응표면계획법

Search Result 320, Processing Time 0.039 seconds

An Analysis for Optimization of Rubber Granule Layer in Synthetic Surfaced Track using Response Surface Methodology (반응표면법을 이용한 육상트랙용 고무칩층의 최적설계에 관한 연구)

  • Kang, Ki-Weon;Lee, Seung-Pyo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.3
    • /
    • pp.787-794
    • /
    • 2010
  • This paper aims to evaluate the effect of each material ingredient on mechanical and dynamic performance and to determine an optimal mixing condition of a rubber granule layer. To minimize the required number of tests, the test matrix was established by using the design of experiments (DOE). The tensile tests were then performed to identify the mechanical properties. Also, to evaluate the dynamic performance that the IAAF has required for athletics tracks for athletes' safety and balance, a series of impact tests were performed by using the so-called the "artificial athlete" machine. Finally, the response surface methodology was used to decide the optimal mixing conditions needed to achieve a high level of mechanical properties and dynamic performance.

Optimal Design of the Monolithic Flexure Mount for Optical Mirror Using Response Surface Method (반응표면법을 이용한 광학미러용 일체형 유연힌지 마운트 최적설계)

  • Kyoungho Lee;Byounguk Nam;Sungsik Nam
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.26 no.3
    • /
    • pp.205-213
    • /
    • 2023
  • An optimal design of a simple beam-shaped flexure hinge mount supporting an optical mirror is presented. An optical mirror assembly is an opto-mechanically coupled system as the optical and mechanical behaviors interact. This side-supporting mount is flexible in the radial direction and rigid for the remaining degrees of freedom to support the mirror without transferring thermal load. Through thermo-elastic, optical and eigenvalue analysis, opto-mechanical performance was predicted to establish the objective functions for optimization. The key design parameters for this flexure are the thickness and length. To find the optimal values of design parameters, response surface analysis was performed using the design of experiment based on nested FCD. Optimal design candidates were derived from the response surface analysis, and the optimal design shape was confirmed through Opto-mechanical performance validation analysis.

Effect of Processing Parameters on the Densification of Carbon/Carbon Composite by Isothermal Low-Pressure Chemical Vapor Infiltration (등온 저압화학기상침투법에 의한 탄소/탄소 복합재료의 치밀화에 대한 제조공정변수의 영향)

  • Park, H.D.;Ahn, C.W.;Cho, K.;Yoon, B.Y.;Kim, K.S.
    • Korean Journal of Materials Research
    • /
    • v.4 no.3
    • /
    • pp.259-267
    • /
    • 1994
  • The effect of processing parameters, temperature, gas concentration, gas flow rate and pressure, were studied on the densification of carbon/carbon composites using a Robust design method in isothermal low-pressure chemical vapor infiltration with a gas system of $C_3H_8-N_2$ After one time of isothermal low-pressure chemical vapor infiltrat.ion, the bulk density of carbon/carbon composites in creased up to 1-9% and apparent porosity of the composites decreased down to 20-50%. ANOVA analysis of the experiment.al data revealed that the important parameters of isothermal lowpressure chemical vapor infiltration were temperature, gas concentration and gas flnw rate. 'There was almost no ~ f f e c t on densification by pressure and interaction between each parameters. In t, he present experimental conditions, the highest bulk density was obtained at $1100^{\circ}C$ temperature, 100% $C_3H_8$, concentration, 100 SCCM flow rate and 5 torr pressure.

  • PDF

Deduction and Verification of Optimal Factors for Stent Structure and Mechanical Reaction Using Finite Element Analysis (스텐트의 구조 및 기계적인 반응에 대한 최적인자 도출과 유한요소해석법을 통한 검증)

  • Jeon, Dong-Min;Jung, Won-Gyun;Kim, Han-Ki;Kim, Sang-Ho;Shin, Il-Gyun;Jang, Hong-Seok;Suh, Tae-Suk
    • Progress in Medical Physics
    • /
    • v.21 no.2
    • /
    • pp.201-208
    • /
    • 2010
  • Recently, along with technology development of endoscopic equipment, a stent has been developed for the convenience of operation, shortening of recovery times, and reduction of patient's pain. To this end, optimal factors are simulated for the stent structure and mechanical reaction and verified using finite element analysis. In order to compare to present commercialized product such as Zilver (Cook, Bloomington, Indiana, USA) and S.M.A.R.T (Cordis, Bridgewater Towsnhip, New Jersey, USA), mechanical impact factors were determined through Taguchi factor analysis, and flexibility and expandability of all the products including ours were tested using finite element analysis. Also, important factors were sought that fulfill the optimal condition using central composition method of response surface analysis, and optimal design were carried out based on the important factors. From the centra composition method of Response surface analysis, it is found that importat factors for flexibility is stent thickness (T) and unit area (W) and those for expandability is stent thickness (T). In results, important factors for optimum condition are 0.17 mm for stent thickness (T) and $0.09\;mm^2$ for unit area (W). Determined and verified by finite element analysis in out research institute, a stent was manufactured and tested with the results of better flexibility and expandability in optimal condition compared to other products. Recently, As Finite element analysis stent mechanical property assessment for research much proceed. But time and reduce expenses research rarely stent of optimum coditions. In this research, Important factor as mechanical impact factor stent Taguchi factor analysis arrangement to find flexibility with expansibility as Finite element analysis. Also, Using to Center composition method of Response surface method appropriate optimized condition searching for important factor, these considering had design optimized. Production stent time and reduce expenses was able to do the more coincide with optimum conditions. These kind of things as application plan industry of stent development period of time and reduce expenses etc. be of help to many economic development.

Robust Optimization of Automotive Seat by Using Constraint Response Surface Model (제한조건 반응표면모델에 의한 자동차 시트의 강건최적설계)

  • 이태희;이광기;구자겸;이광순
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2000.04b
    • /
    • pp.168-173
    • /
    • 2000
  • Design of experiments is utilized for exploring the design space and for building response surface models in order to facilitate the effective solution of multi-objective optimization problems. Response surface models provide an efficient means to rapidly model the trade-off among many conflicting goals. In robust design, it is important not only to achieve robust design objectives but also to maintain the robustness of design feasibility under the effects of variations, called uncertainties. However, the evaluation of feasibility robustness often needs a computationally intensive process. To reduce the computational burden associated with the probabilistic feasibility evaluation, the first-order Taylor series expansions are used to derive individual mean and variance of constraints. For robust design applications, these constraint response surface models are used efficiently and effectively to calculate variances of constraints due to uncertainties. Robust optimization of automotive seat is used to illustrate the approach.

  • PDF

RS-based method for estimating statistical moments and its application to reliability analysis (반응표면을 활용한 통계적 모멘트 추정 방법과 신뢰도해석에 적용)

  • Huh, Jae-Sung;Kwak, Byung-Man
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.852-857
    • /
    • 2004
  • A new and efficient method for estimating the statistical moments of a system performance function has been developed. The method consists of two steps: (1) An approximate response surface is generated by a quadratic regression model, and (2) the statistical moments of the regression model are then calculated by experimental design techniques proposed by Seo and $Kwak^{(4)}$. In this approach, the size of experimental region affects the accuracy of the statistical moments. Therefore, the region size should be selected suitably. The D-optimal design and the central composite design are adopted over the selected experimental region for the regression model. Finally, the Pearson system is adopted to decide the distribution type of the system performance function and to analyze structural reliability.

  • PDF

LDPE필름포장이 단감의 품질변화에 미치는 영향

  • 김진성;이상덕;하영선
    • Proceedings of the Korean Society of Postharvest Science and Technology of Agricultural Products Conference
    • /
    • 2003.04a
    • /
    • pp.133.2-134
    • /
    • 2003
  • 감(Diospyros kaki)은 한국과 일본이 주산지이며 국내 단감의 재배 품종은 만생종인 ‘부 유’가 주종을 이루고 있으며 독특한 맛, vitamin C 등 영양적 가치와 함께 식품으로서 안전성이 우수한 과실로 평가되면서 소비량이 매년 꾸준히 증가하고 있다. 단감은 국내에서 생산되는 과실로서는 드물게 PE필름에 포장된 상태에서 유통되고 있다. 이렇게 포장된 과실은 저온상태에서 유통되어야 MA의 효과를 충분히 발휘할 수 있으며 유통기한도 연장될 수 있을 것으로 생각되나 현재 국내에서 저온 유통되는 단감은 찾아보기 어렵다. 이에 현행 상온유통에서 PE필름 밀봉 방식과 무포장 상태의 과실의 품질변화를 살펴봄으로써 그 문제점을 파악하고 반응표면분석을 통하여 최적 저장조건을 찾아내고자 하였으며 유통조건을 고려하여 0.05mm LDPE 필름밀봉방식의 품질변화를 보았으며, 문제점을 파악하고자 하였다. 본 연구에서는 LDPE 필름포장이 단감의 품질변화에 미치는 영향을 알아보기 위하여 단감은 2$0^{\circ}C$에서 0.05mm LDPE필름으로 포장하여, 당도, 수소이온농도, 경도를 측정하고 또한 $O_2$(1, 3, 5%) $CO_2$(5, 10, 15%)의 9구분으로 환경기체조성을 조절하여 중심합성계획법에 의해 반응표면분석을 하고 종합적으로 검토하였다.

  • PDF

A Study on Optimal Cutting Conditions of MQL Milling Using Response Surface Analysis (반응표면분석을 이용한 MQL 밀링가공의 최적절삭조건에 관한 연구)

  • Lee, Ji-Hyung;Ko, Tae-Jo;Baek, Dae-Gyun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.1
    • /
    • pp.43-50
    • /
    • 2009
  • Semi dry cutting known as MQL (Minimum Quantity Lubrication) machining is widely spreaded into the machining shops nowadays. The objective of this research is to suggest how to derive optimum cutting conditions for the milling process in MQL machining. To reach these goals, a bunch of finish milling experiments was carried out while varying cutting speed, feed rate, oil quantity, depth of cut and so on with MQL. Then, response surface analysis was introduced for the variance analysis and the regression model with the experimental data. Finally, desirability function based on regression model was used to obtain optimal cutting parameters and verification experiment was done.

Optimization of Batch Production of Chiral Phenyl Oxirane by Response Surface Analysis (반응표면분석법을 이용한 광학활성 phenyl oxirane의 회분식생산 최적화)

  • 김희숙;박성훈;이은열
    • Journal of Life Science
    • /
    • v.13 no.6
    • /
    • pp.794-798
    • /
    • 2003
  • Batch production of (S)-phenyl oxirane was investigated using epoxide hydrolase activity of Rhodosporidium toruloides SJ-4. Effect of reaction condition of asymmetric biohydrolysis of racemic phenyl oxirane was analyzed and optimized by response surface methodology. The optimal conditions of pH, temperature and DMSO cosolvent ratio were 7.4, $34^P\circ}C$, and 2.3%(v/v), respectively. The final yield was enhanced up to 67%, and reaction times required to reach 99% ee (enatiomeric excess) decreased down to 50% by response surface methodology Enantiopure (S)-phenyl oxirane with 100% enantiopurity and 24% yield (theoretical yield = 50%) was obtained from racemic substrate.

Shape Optimization of the Metal Boss for a Composite Motor Case (복합재 연소관의 금속 보스 형상 최적설계)

  • Jeong, Seungmin;Kim, Hyounggeun;Hwang, Taekyung
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.20 no.6
    • /
    • pp.29-37
    • /
    • 2016
  • This paper proposes a shape optimization of the metal boss for a composite motor case using finite element analysis. For the structural safety and the weight reduction of the composite motor case, under the internal pressure, the fiber stress in the dome area and the tightening bolt stress are constrained and the boss weight is set to objective function, respectively. The response surface models are constructed for the performance characteristics by using response surface method. The significance of the design variables about the performance characteristics is evaluated through the ANOVA(analysis of variance) and the goodness of fit test for the constructed model is performed through the regression analysis. The SQP(sequential quadratic programming) algorithm is used for the optimization and the proposed method is verified by performing structural analysis for the optimum shape.