• Title/Summary/Keyword: 반응염료

Search Result 361, Processing Time 0.022 seconds

Utilization of Corynebacterium glutamicum Biomass as a Regenerable Biosorbent for Removal of Reactive Dyes from Aqueous Solution (반응성 염료 제거를 위한 재생 가능한 흡착제로서 Corynebacterium glutamicum 바이오매스의 이용)

  • Won, Sung -Wook;Choi, Sun Beom;Han, Min Hee;Yun, Yeoung-Sang
    • Korean Chemical Engineering Research
    • /
    • v.43 no.4
    • /
    • pp.542-547
    • /
    • 2005
  • Biosorption is considered to be a promising alternative to replace or supplement the present methods for the treatment of dye-containing wastewater. In this study, the protonated biomass of Corynebacterium glutamicum was evaluated for its potential to remove two types of reactive dyes (Reactive Red 4, Reactive Blue 4) from aqueous solution. The uptakes of dyes were enhanced with decrease in the solution pH, which was likely because the biomass functional groups increased at acidic pH and the positively charged sites could bind the negatively charged sulfonate group ($dye-SO_3^-$) of dye molecules. An equilibrium state was practically achieved in 10 hr. The Langmuir sorption model was used for the mathematical description of the sorption equilibrium. The maximum sorption capacities of C. glutamicum biomass for Reactive Red 4 and Reactive Blue 4 were estimated to 112.36 mg/g and 263.16 mg/g at pH 1, and 71.94 mg/g and 155.88 mg/g at pH 3.

Reactive Dye(RB-8, RB-49, RR-218) in Crystallization and Characteristic of Population Density (반응성 염료(RB-8, RB-49, RR-218)의 결정화 및 입도분포 특성)

  • Han, Hyunkak;Lee, Jonghoon;In, Daeyoung
    • Korean Chemical Engineering Research
    • /
    • v.50 no.2
    • /
    • pp.198-203
    • /
    • 2012
  • Salting-out technique was adopted to crystallize dye crystals from dye solution. In this research solubility of dye solution and crystallization kinetics of Reactive dye (RB-8, RB-49, RR-218) was investigated. The empirical expressions of salting-out crystallization kinetics for Reactive dye (RB-8, RB-49, RR-218) in continuous MSMPR crystallizer was RB-8 in crystal growth kinetics $G=7.1{\times}10^{-4}{\Delta}C^{0.67}$ and nucleation kinetics $B^0=3.1{\times}10^{15}{\Delta}C[1.2{\times}10^{-8}+{\Delta}C^{0.7}M_T{^2}]$, RB-49 in crystal growth kinetics $G=5.2{\times}10^{-4}{\Delta}C^{0.3441}$ and nucleation kinetics $B^0=7.2{\times}10^{15}{\Delta}C[3.3{\times}10^{-8}+({\Delta}C)^{0.7}M_T{^2}]$, RR-218 in crystal growth kinetics $G=4.4{\times}10^{-4}{\Delta}C^{0.2361}$ and nucleation kinetics $B^0=6.3{\times}10^{15}{\Delta}C[7.9{\times}10^{-8}+({\Delta}C)^{0.7}M_T{^2}]$. Also, comparison of calculated crystal size distribution applying to characteristic curve method with experimental crystal size showed good agreement.