• Title/Summary/Keyword: 반응속도 모델링

Search Result 100, Processing Time 0.027 seconds

Conventional Fluid Dynamics and CFD Modeling for the Systematic Analysis of the Inside Flow of the Fischer-Tropsch Packed Bed Reactor (전통적인 유체역학 방법론과 CFD 결합을 통한 Fischer-Tropsch 고정층 반응기 내부 흐름의 체계적 모델링)

  • Kim, Hyunseung;Cho, Jaehoon;Hong, Gi Hoon;Moon, Dong Ju;Shin, Dongil
    • Journal of the Korean Institute of Gas
    • /
    • v.20 no.4
    • /
    • pp.65-77
    • /
    • 2016
  • Modeling for complex reacting flow in Fischer-Tropsch reactor is one of the challenges in the field of Computational Fluid Dynamics (CFD). It is hard to derive each and every reaction rate for all chemical species because Fisher-Tropsch reaction produces many kinds of hydrocarbons which include lots of isomers. To overcome this problem, after analyzing the existing methodologies for reaction rate modeling, non-Anderson-Schulz-Flory methodology is selected to model the detailed reaction rates. In addition, the inside flow has feature of multi-phase flow, and the methodologies for modeling multi-phase flow depend on the interference between the phases, distribution of the dispersed phase, flow pattern, etc. However, existing studies have used a variety of inside flow modeling methodologies with no basis or rationale for the feasibility. Modeling inside flow based on the experimental observation of the flow would be the best way, however, with limited resources we infer the probable regime of inside flow based on conventional fluid dynamics theory; select the appropriate methodology of Mixture model; and perform systematic CFD modeling. The model presented in this study is validated through comparisons between experimental data and simulation results for 10 experimental conditions.

A study of the removal efficiency of acidic gas at various operating conditions using Computation Fluid Dynamics (전산유체역학을 이용한 반건식 반응기의 운전조건에 따른 산성가스제거효율에 관한연구)

  • Lee, Geon-Ju
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.19 no.1
    • /
    • pp.93-101
    • /
    • 2011
  • The modeling of SDR was carried out for the application of the solid waste incineration system. To find optimum operating condition for removal of acidic gases, computation fluid dynamic(CFD) model was used. In this study, the temperature profile of SDR(spray dry reactor) and the gas velocity profile for different models were investigated. In this model, the diameter of SDR was 3 meter and the height of SDR was 9 meter. The amount of inlet combustion gas of SDR was $6,125Nm^3/hr$ and the inlet temperature of SDR was 493 K. The amount of lime injection of SDR was 151 kg/hr. When the inlet shape of SDR was changed, the temperatur of SDR was changed and the gas velocity of SDR was 0.48 m/sec to 1.17m/sec and the outlet gas velocity of SDR was 6.9 m/sec to 7.42m/sec As a result of modeling, the average velocities in SDR and outlet were 0.489 m/sec and 7.424 m/sec, respectively, in which the temperature of outlet in SDR was 448 K.

Combustion Modeling of Nano/Micro Aluminum Particle Mixture (나노-마이크로 알루미늄 혼합 입자의 공기와의 연소 모델링)

  • Yoon, Shi-Kyung;Shin, Jun-Su;Sung, Hong-Gye
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.15 no.6
    • /
    • pp.15-25
    • /
    • 2011
  • One dimensional combustion modeling of aluminum combustion behavior is proposed. Combustion model is assumed that region consists as follows ; preheat, reaction, post reaction region. Flame speed as a function of particle size, equivalence ratio for unitary particles and fraction ratio of micro to nano particle size for binary particles were investigated for lean burn condition at 1 atm. Results were compared with experimental data. For unitary particles, flame speed increase as particle size decreases, but opposite trend with equivalence ratio. For binary particles, flame speed increases proportionally as nano particle fraction increases. For flame structure, separated or overlapping flames are observed, depending on the fraction of nano sized particles.

Respiration Characteristics Modeling of fresh mushroom lander CA(Controlled Atmosphere) (환경기체조성하에서 생버섯의 호흡특성 모델링)

  • Lee, H. D.;Yun, H. S.;Lee, W. O.;Chung, H.;Cho, K. H.
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2002.02a
    • /
    • pp.343-348
    • /
    • 2002
  • 생버섯의 환경기체조절저장을 위한 적정 기체조성을 예측하기 위하여 팽이버섯과 느타리 버섯을 대상으로 호흡특성치를 측정 및 모델링한 결과 두 버섯의 호흡속도는 환경기체조성에 영향을 받는 것으로 나타났다. 버섯의 산소소비속도와 이산화탄소발생속도를 반응표면분석한 결과 느타리버섯의 이산화탄소발생속도를 제외하고는 $R^2$=0.9이상의 높은 상관관계를 나타내었다. 반응표면 분석결과를 이용하여 두 버섯의 적정 기체조성은 팽이버섯의 경우 1~2.5% $O_2$와 10.5-11.5% $CO_2$, 느타리 버섯의 경우에는 2.5~4.5% $O_2$와 11.5~13%$CO_2$가 적정 기체조성 것으로 예측되었으며 일반적인 생버섯의 저장기체조건에 포함되는 농도였다. 따라서 예측된 조건에서 생버섯의 환경기체조절 저장이 가능 할 것으로 판단되었다.

  • PDF

Conceptual Geochemical Modelling of Long-term Hyperalkaline Groundwater and Rock Interaction (지구화학 모델을 이용한 장기간의 강알칼리성 지하수-암석의 반응 개념 모델링)

  • Choi, Byoung-Young;Yoo, Si-Won;Chang, Kwang-Soo;Kim, Geon-Young;Koh, Yong-Kwon;Choi, Jong-Won
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.5 no.4
    • /
    • pp.273-281
    • /
    • 2007
  • Hyperalkaline groundwater formed by groundwater-cement components and its reaction with bedrock in a nuclear waste repository were simulated by geochemical modeling. The result of groundwater-cement components reaction showed that the pH of water was 13.3 and the precipitated minerals were Brucite, Katoite, Calcium Silicate Hydrate(CSH1.1), Ettringite, Hematite, and Portlandite. The result of interaction between such minerals and groundwater sampled in Gyeongju area also showed that the pH of groundwater reached 12.4. Interaction between such hyperalkaline groundwater and granite was simulated by kinetic model during $10^3$ years. This result showed that the final pH of groundwater reached 11.2 and the variation of pH was controlled by dissolution/precipitation of silicate and CSH minerals. Groundwater quality was also determined by dissolution/precipitation of silicate, CSH, oxide minerals. Our results show that geochemical modeling of long-term hyperalkaline groundwater and rock interaction can contribute to the safety assessment of engineered barrier by predicting geochemical condition in repository site.

  • PDF

Combustion modeling of nano aluminum particle and water mixture (나노 알루미늄-물 혼합물의 수반응 연소 모델링)

  • Yoon, Shi-Kyung;Sung, Hong-Gye
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.05a
    • /
    • pp.472-475
    • /
    • 2010
  • Theoretical consideration on the combustion behavior of nano-aluminum and water mixture was conducted. The regions are divided into; 1)water+aluminum 2)steam+aluminum 3)reaction zone. Latent heat of vaporization was considered as a function of pressure in case of phase change of water. Also, pressure exponent was studied of various sized nano particles within the range of 0.1MPa ~ 10MPa.

  • PDF

Kinetic Models for the Quality Factors of Banana by Different Dehydration Methods (바나나의 건조방법(乾燥方法)에 따른 품질변화(品質變化) 인자(因子)에 대한 반응속도(反應速度) 모델링)

  • Kim, Su Yeon;Choi, Yong Hee
    • Current Research on Agriculture and Life Sciences
    • /
    • v.7
    • /
    • pp.175-184
    • /
    • 1989
  • Kinetics of ascorbic acid and browning that may use on the optimization of food dehydration were evaluated. Banana was chosen for this as the representative test material. We have described the destruction of ascorbic acid and browning as first and zero order reactions. The temperature dependence between two reactions were conducted with Arrhenius equation. Finally we have operated SPSS computer programs reapeatedly that we found very dose value of the parameter between result of ascorbic acid and browning. The attained Kinetic models were well prepared for the value of result experiments and the models may use on optimization for dehydration progress. Destruction rate of ascorbic acid and browning rate were low at initiation of progress, increased to show maximum at the low moisture on mid-progress and then decreased gradually. Freeze drying showed the most constant quality of product in this case.

  • PDF

Computational Modeling of Cyclic Voltammetry on Multi-electron Electrode Reaction using Diffusion Model (확산모델을 이용한 다중전자 전극반응에 대한 순환전위법의 전산모델링)

  • Cho, Ha-Na;Yoon, Do-Young
    • Journal of the Korean Electrochemical Society
    • /
    • v.15 no.3
    • /
    • pp.165-171
    • /
    • 2012
  • Here is implemented MATLAB program to analyze the characteristic curves of cyclic voltammetry which involves the multi-electron electrode reaction considered as key processes in electrochemical systems. For the electrochemical mass-transfer system, Fick's concentration equation subject to semi-infinite diffusion model for the boundary condition was discretized and solved by the explicit finite difference method. The resulting concentration values were converted into currents at each node by using Butler-Volmer equation. Based on the good agreement between the present numerical solution and the existing experimental results, effects of kinetic constants and CV scan rates on the reaction mechanism in multi-electron transfer processes were investigated effectively.

Forecast Modeling of Catalyst Deactivation in Coal Liquefaction (석탄 액화반응에서의 촉매 불활성에 관한 예측 모델링)

  • 이영우;손재익
    • Journal of Energy Engineering
    • /
    • v.3 no.1
    • /
    • pp.18-27
    • /
    • 1994
  • 석탄액화반응에서 촉매 세공구조가 촉매 불활성화에 미치는 영향을 조사하기 위하여 간단한 모델을 전개하였다. 촉매의 세공수 분포에 근거하여 두 개의 Dirac delta 함수분포를 갖는 다공질 촉매구조를 제안하였으며 촉매 세공구조와 반응속도상수와의 관계를 유도하기 위하여 단순화된 반응계를 가정하였다. 균일 코드피복 가정에서 본 모델을 촉매 불활성화 예측에 적용하였으며 계산과정에서 세공율, 세공 크기 등의 촉매 특성치에 대해서는 실제값을 이용하였다. 본 모델연구에 의하면 unimodal 촉매에 비해 bimodal 촉매가 촉매 불활성화에 덜 민감하였다.

  • PDF

Faster collision response through reformulating linear equations (선형방정식의 재구성을 이용한 충돌반응 속도 개선)

  • 정대현;김은주;유관우
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2003.04c
    • /
    • pp.208-210
    • /
    • 2003
  • 컴퓨터 그래픽스에서 물리기반 모델링을 사용한 다관절체의 움직임을 구하는 것은 중요한 문제이다. 다관절체가 움직이는 동안 충돌이 발생했을 때 충돌반응 시간이 많이 걸린다면 그만큼 시뮬레이션이 자연스럽지 못하다. 본 논문에서는 충돌반응에서 중요한 선형방정식의 해를 구하는 시간을 단축시킴으로써 짧은 시간안에 다관절체의 충돌을 처리할 수 있는 방법을 제시한다. 이러한 결과는 게임이나 그래픽 툴 등에서 적용이 가능하다.

  • PDF