• Title/Summary/Keyword: 반응성산소종

Search Result 5, Processing Time 0.049 seconds

Catalase Induced by All-Trans Retinoic Acid Is Involved in Antiproliferation of 36B10 Cells (레티노인산에 의한 카타라제의 유도가 36B10세포의 증식억제에 미치는 효과)

  • Park, Woo-Yoon;Yu, Jae-Ran
    • Radiation Oncology Journal
    • /
    • v.28 no.4
    • /
    • pp.211-218
    • /
    • 2010
  • Purpose: All-trans retinoic acid (ATRA) has anti proliferative effects against brain tumor cells. Recently, ATRA has been reported to induce catalase. We investigated whether catalase induction by ATRA is associated with its anti proliferative effects. Materials and Methods: 36B10 cells were exposed to 0~50${\mu}M$ ATRA for 24 or 48 hours and mRNA, protein, and activity of catalase were measured. Reactive oxygen species (ROS) were measured using 2',7'-dichlorofluorescin diacetate. A clonogenic assay was used to confirm the cytotoxic effect. Results: The mRNA, protein, and activity of catalase were found to increase in a concentration- and incubationtime-dependent manner. The increase in catalase activity induced by ATRA was decreased by the addition of 3-amino-1,2,4-triazole (ATZ). ROS was also increased with ATRA and decreased by the addition of ATZ. The decrease in cell survival induced by ATRA was partly rescued by ATZ. Conclusion: Catalase induction by ATRA is involved in ROS overproduction and thus inhibits the proliferation of 36B10 cells.

Role of Inducibility of Superoxide Dismutases and Metallothionein of Mouse Lungs by Paraquat in Aging (Paraquat에 의한 생쥐 폐의 Superoxide Dismutases와 Metallothionein의 유도능과 노화와의 관계)

  • Lee, Tae-Bum;Park, Yoo-Hwan;Choi, Cheol-Hee
    • Tuberculosis and Respiratory Diseases
    • /
    • v.50 no.5
    • /
    • pp.579-590
    • /
    • 2001
  • Background : The aging process may be induced, at least in part, by reactive oxygen species(ROS). It has been thought that the lung could be a good source of ROS because it has a high oxygen tension. In the present study, we invetigated the inducibility of the first and last lines against oxidative stress, superoxide dismutases(CujZn-SOD and Mn-SOD) as a scavenger of ${O_2}^-\;{\cdot}$ and metallothionein(MT) as a scavenger of $OH{\cdot}$, respectively, in mouse lungs with age. Methods : Oxidative stress was induced by paraquat, an intracellular superoxide generator, at 1, 4, 8, and 12 months of age and then SODs and MT mRNAs were determined by RT-PCR method. Results : The steady-state level of Mn-SOD mRNA increased from 1 to 8 months but decreased thereafter. However, Mn-SOD mRNA was not induced by paraquat after 1 month. On the other hand, there was no change in the steady-state level of Cu/Zn-SOD mRNA, which decreased abruptly at 12 months of age. Additionally, Cu/Zn-SOD mRNA was not induced by paraquat at any age. There was no change in the steady-state level of MT mRNA with age whereas its inducibility by paraquat was intact at all ages. Conclusion : These results indicate that lack of induction of SODs with age may be one of the causative factors in the aging process while induction of MT may play an important role in the defense against oxidative stress. It is therefore implicated that the tissue antioxidant/prooxidant balance could be one of determinants of mean life span.

  • PDF

The Effect of Troglitazone on Thermal Sensitivity in Uterine Cervix Cancer Cells (자궁 경부암 세포에서 Troglitazone이 온열감수성에 미치는 영향)

  • Lee, Ji-Hye;Kim, Won-Dong;Yu, Jae-Ran;Park, Woo-Yoon
    • Radiation Oncology Journal
    • /
    • v.28 no.2
    • /
    • pp.91-98
    • /
    • 2010
  • Purpose: Troglitazone (TRO), a PPAR-$\gamma$ agonist, can reduce heat shock protein (HSP) 70 and increase the antioxidant enzymes, such as superoxide dismutase (SOD) and catalase, which might affect thermal sensitivity. Here, we investigated whether TRO modifies thermal sensitivity in uterine cervical cancer cells, which is most commonly treated by hyperthermia (HT). Materials and Methods: HeLa cells were treated with $5{\mu}M$ TRO for 24 hours before HT at $42^{\circ}C$ for 1 hour. Cell survival was analyzed by clonogenic assay. The expression of HSPs was analyzed by Western blot. SOD and catalase activity was measured and reactive oxygen species (ROS) was measured using 2',7'-dichlorofluorescin diacetate and dihydroethidium. Results: The decreased cell survival by HT was increased by preincubation with TRO before HT. Expression of HSP 70 was increased by HT however, it was not decreased by preincubation with TRO before HT. The decreased Bcl-2 expression by HT was increased by preincubation with TRO. SOD and catalase activity was increased by 1.2 and 1.3 times,respectively with TRO. Increased ROS by HT was decreased by preincubation with TRO. Conclusion: TRO decreases thermal sensitivity through increased SOD and catalase activity, as well as scavenging ROS in HeLa cells.

Immune Cell Stimulating Activity of Wheat Arabinoxylan (밀 arabinoxylan의 면역세포 활성화 작용)

  • Choi, Eun-Mi;Lim, Tae-Soo;Lee, Hye-Lim;Hwang, Jae-Kwan
    • Korean Journal of Food Science and Technology
    • /
    • v.34 no.3
    • /
    • pp.510-517
    • /
    • 2002
  • Effects of wheat arabinoxylan on mouse spleen lymphocytes and peritoneal macrophages were examined in vitro. Among three wheat arabinoxylans (A1: low MW, A2: medium MW, A3: high MW), A3$(50{\sim}100\;{\mu}g/mL)$ increased the viability of spleen lymphocytes up to $114{\sim}125%$ of the control. A1 and A3 $(20\;{\mu}g/mL)$ increased the viability of lipopolysaccharide-treated lymphocytes synergistically. Viability of murine peritoneal macrophages treated with wheat arabinoxylans $(10{\sim}100{\mu}g/mL)$ was increased up to $135{\sim}175%$ of the control. The cytotoxic activity of macrophages against murine lymphocytic leukemic cell increased in the presence of wheat arabinoxylan. Phagocytic index of macrophages treated with wheat arabinozylans $(20\;{\mu}g/mL)$ significantly increased $197{\sim}232%$ compared with the control, and lysosomal phosphatase and myeloperoxidase activities also increased significantly (p<0.05). Treatment of wheat arabinoxylans tended to decrease nitrite production, but significantly stimulated $H_2O_2\;and\;O_2$ productions of macrophages (p<0.05). These results indicate that the immunostimulating effect of wheat arabinoxylan may be closely related with lysosomal enzyme activity and reactive oxygen intermediate production of macrophages.