• Title/Summary/Keyword: 반상변정

Search Result 32, Processing Time 0.028 seconds

The Study of Natural Background of Geologic Units for Stream Sediments in the Gurye Area (구례지역 하상퇴적물의 지질집단별 자연배경치에 대한 연구)

  • 박영석;장우석;김종균
    • Economic and Environmental Geology
    • /
    • v.36 no.4
    • /
    • pp.275-284
    • /
    • 2003
  • We collected the samples of stream sediments from primary channels in order to establish natural background of major and minor elements for geologic units in the Gurye area. Stream sediments samples having no possibility of contamination effect and representing drainage basins composed of uniform geology, were collected from April to May in 1999, the chemical analysis of which was carried out. The tolerable level was used to investigate the enrichment degree of harmful elements. The contents of Ni and Cr exceeded the tolerance level in some sections. The tolerance level excess of those elements was regarded as the effect of the metamorphic rock which constituted the bed rock of the area. In order to identify the comprehensive enrichment pattern, the tolerable level was used in calculating the enrichment index. The enrichment index of harmful heavy metals showed that Granite gneiss area is 0.39, Porphyroblastic granite gneiss area 0.32, Biotite gneiss area 0.42, Migmatitic gneiss area 0.41, Tuff area 0.30, Andesite area 0.46, Conglomerate area 0.42, and Granite area 0.26. Those results showed that natural background of Gurye area had not been exposed to harmful heavy metal elements.

Petrological Study and Provenance Estimation on the Stone Materials from Outer Rampart of the Namhansanseong Fortress, Korea (남한산성 외성 성벽부재에 대한 암석학적 연구 및 산지추정)

  • Park, Sang Gu;Park, Sung Chul;Kim, Jae Hwan;Jwa, Young-Joo
    • The Journal of the Petrological Society of Korea
    • /
    • v.26 no.4
    • /
    • pp.353-360
    • /
    • 2017
  • The preservation treatment for the outer rampart of Namhansanseong fortress is needed due to partial collapse and separation of stone materials. In this study, we investigated the petrological features of the stone materials used for the outer rampart and estimated their provenances through the geologic survey. Through the above study, the suitable replacement stone in the maintenance of outer rampart were suggested. The stone materials of the above outer rampart consist of the banded gneiss, augen gneiss, granitic gneiss and porphyroblastic gneiss. Among these four kinds of rocks, granitic gneiss is quantitatively the most abundant. Petrological comparisons between stone materials and rocks distributed around the fortress, lead to the conclusion that the above materials are likely to have been delivered from around the fortress. Judging from the results of the comparison on frequency of use and strength characteristics among the above rocks, the granitic gneiss is considered to be suitable for restoration of the outer rampart of the fortress.

APPLICATION OF TELEVIEWER AND COLOR-CORESCANNER FOR THE ESTIMATION OF GNEISS STONE RESOURCES OF HADONG, KYEONGSANNAMDO PROVINCE (하동지역 편마암 석재의 품질 평가를 위한 텔레뷰어 및 칼라 코어스캐너의 응용)

  • Hyun, Hye-Ja;Kim, Jung-Yul
    • Journal of the Korean Geophysical Society
    • /
    • v.7 no.4
    • /
    • pp.255-267
    • /
    • 2004
  • Analysis of fracture system in a stone quarry mine is a critical importance in assessing the recoverable amounts of building stones as well as in establishing the systematic and efficient development plan. Rock formation comprising vein structure, degree of weathering, and compositon of minerals, is a critical factor of estimating the stone quality. The aim of this study is to provide desirable informations about both fracture pattern and rock formation by using Televiewer and Color-corescanner. Televiewer measurement were conducted at 7 boreholes in the gneiss quarry mine, Hadong, Kyeongsangnamdo province and the corresponding cores were scanned using Color-corescanner at the same place. In Televiewer images, all kinds of fractures were clearly observed and a better discrimination of stone quality can be identified. Meanwhile, the core images with high resolution (max. 20 pixels/mm) provided detailed informations on rock formation such as features of particles and fissures that can be nearly undetected by Televiewer.

  • PDF

Survey of the Geology and Geological Structure of the Foundations at a Construction Site for Tram (경전철 건설구간의 지질 및 지질구조특성에 관한 지반조사)

  • Lee, Byung-Joo;SunWoo, Chun;Chae, Byung-Gon
    • The Journal of Engineering Geology
    • /
    • v.20 no.3
    • /
    • pp.329-338
    • /
    • 2010
  • The foundation area for tram contains biotite gneiss, quartzo-feldspathic gneiss, calc-silicate rock, and porphyroblastic gneiss of the pre-Cambrian Kyeonggi gneiss complex. These rocks record at least three stages of deformation, as indicated by fold sets of contrasting orientations (D1-D3). Joints are generally steeply dipping and strike NW-SE to WNW-ESE. The Gonjiam Fault, which strikes WNW-ESE, follows a river in the area. The fault possesses a 3-m-wide fracture zone, a 10-m-wide damage zone, and is 15 km long. Two tunnels have been constructed through the biotite gneiss. The geometric relationship between discontinuities (e.g., joints and foliation) and tunneling direction reveals that set 3 of the AA tunnel is unstable but that BB tunnel is relatively safe.

Analysis on the Characteristics of the Landslide - With a Special Reference on Geo-Topographical Characteristics - (땅밀림 산사태의 발생특성에 관한 분석 - 지형 및 지질특성을 중심으로 -)

  • Park, Jae-Hyeon
    • Journal of Korean Society of Forest Science
    • /
    • v.104 no.4
    • /
    • pp.588-597
    • /
    • 2015
  • This study was carried out to identify the reasons of the landslide by land creeping in South Korea in order to provide basic information for establishing the management plan for prevention. Total 29 sites of landslide areas caused by land creeping were observed in South Korea. Among them, the soil-composition of most frequent landslide areas occurred by land creeping was colluvium landslide as 75.9% (22 sites), followed by clay soil landslide as 10.3% (3 sites), bedrock landslide as 6.9% (2 sites), and weathered rock landslide as 6.9% (2 sites). According to the types of parental rocks, the investigated landslide areas were divided into 3 types: 1) metamorphic rocks including schist, phylite, migmatitic gneiss, quartz schist, pophyroblastic gneiss, leucocratic granite, mica schst, banded gneiss and granitic gneiss, 2) sedimentary rocks including limestone, sandstone or shale and mudstone, 3) igneous rocks such as granite, andesite, rhyolite and masanite. As a result, it was noticed that the landslides occurred mostly at the metamorphic rocks areas (13 sites; 44.8%), followed by sedimentary rock areas (12 sites; 41.4%), and igneous rock areas (4 sites; 13.8%). Looking at the direct causes of the landslide, the anthropological activities (71%) such as cut slopes for quarrying, construction of country house, plant, and road, farming of mountain top, and reservoir construction were the biggest causes of the landslides, followed by the land creeping landslides (22%) caused by geological or naturally occurred (22%), and cliff erosions (7%) by caving of rivers and valleys.

Physical Properties of Major Bedrocks in Chungju-Goesan Area as Aggregates (충주-괴산일대에서 산출되는 주요 기반암의 골재로서의 물성특징)

  • Byoung-Woon You;Jaehyung Yu
    • Economic and Environmental Geology
    • /
    • v.55 no.6
    • /
    • pp.649-659
    • /
    • 2022
  • This study examined the granite, quartzite, phyllite, schist, and gneiss as aggregate resources among the original rock distributed in the Chungju-Goesan area. The granite distributed in the study area is mainly composed of Jurassic biotite granite, and the quartzite layer is from the Daehyangsan quartzite Formation distributed on the upper part of the Gyemyeongsan Formation and the Hyangsan-ri dolomitic limestone Formation. In addition, phyllite is pophyrytic phyllite-schist from the Hwanggangri Formation of the Okcheon group, schist is chlorite schist, from the Munjuri Formation of the Okcheon group, and gneiss is porphyroblastic gneiss which is the upper part of the Seochangri Formation. Aggregate quality evaluation factors of these rocks included fineness modulus, absorption, unit weight, absolute dry density, solid content, porosity, resistance to abrasion, and soundness. In the case of granite, it was found to be partially unsatisfactory in terms of unit weight, solid content, porosity, and resistance to abrasion. Gneiss was found to be out of the standard values in resistance to abrasion and schist in porosity and solid content. As for the overall quality of aggregate resources, it was analyzed that quartzite, gneiss, and phyllite showed excellent quality. Aggregate quality tests are performed simply for each rock, but the rock may vary depending on the morphology of the mineral. Therefore, when analyzing and utilizing the quality evaluation of aggregate resources, it will be possible to use them more efficiently if the rock-mineralological research is performed together.

Metamorphism and Deformation of the Late Paleozoic Pyeongan Supergroup in the Taebaeksan Basin: Reviews on the Permo-Triassic Songrim Orogeny (태백산분지에 분포하는 후기 고생대 평안누층군의 변성-변형작용: 페름-삼첩기 송림 조산운동의 고찰)

  • Kim, Hyeong-Soo
    • The Journal of the Petrological Society of Korea
    • /
    • v.21 no.2
    • /
    • pp.151-171
    • /
    • 2012
  • The Permo-Triassic Songrim orogeny in the Korean peninsula was a major tectonic event involving complicated continental collisions at the eastern margin of Eurasia. Based on the previous studies on the metamorphic and deformations features of the Songrim orogeny, this paper presents metamorphic and structural characteristics and timing of the Songrim orogeny in the Taebaeksan basin, and discuss about correlation of the tectono-metamorphic evolution of the Taebaeksan basin with the Okcheon basin and the Imjingang belt with a combined analysis of bulk crustal shortening direction, metamorphic P-T and T-t (time) paths. The metapelites in the Pyeongan Supergroup in the northeastern margin of the Taebaeksan basin have experienced lower-temperature/medium-pressure (LT/MP) regional metamorphism followed by high-temperature contact metamorphism due to the Jurassic granite intrusion. The earlier LT/MP regional metamorphism produced two loops of clockwise P-T-d (deformation) paths combined with four deformation events ($D_1-D_4$). The first loop concomitant with $D_1$ and $D_2$ occurred at $400-500^{\circ}C$, 1.5-3.0 kbar, and related with growth of syn-$D_1$ chloritoid and andalusite, post-$D_1$ margarite, Ca-rich syn-$D_2$ or post-$D_2$ plagioclase. The second loop accompanying $D_3$ and $D_4$ occurred at $520-580^{\circ}C$, 2.0-6.0 kbar, and associated with the growth of syn-$D_3$ garnet and staurolite, and syn-$D_4$ and/or post-$D_4$ andalusite porphyroblasts. Furthermore the syn-$D_1$ chloritoid and andalusite porphyroblasts grew during E-W bulk crustal shortening, whereas the syn-$D_3$ garnet and staurolite, and the syn-$D_4$ and/or post-$D_4$ andalusite porphyroblasts have grown under N-S bulk crustal shortening. The similarity in the characteristics and timing of the metamorphism and bulk crustal shortening directions between the Okcheon and Imjingang belts suggest that the peak metamorphic conditions tend to increase toward the western part (Imjingang belt and southwestern part of the Gyeonggi Massif) from the eastern part (Taebaeksan basin). The E-W bulk crustal shortening influenced the eastern part of the Okcheon belt, whereas the N-S bulk crustal shortening resulted in strong deformation in the Imjingang and Okcheon belts. Consequently, the Permo-Triassic Songrim orogeny in the Korean peninsula is probably not only related to collision of the North and South China blocks, but also to the amalgamation of terrane fragments at the eastern Eurasia margin (e.g., collision of the Sino-Korean continent and the Hida-Oki terrane).

Granulite facies metamorphism of the Punggi area in the Sobeaksan Gneiss Complex -Crustal evolution and environmental geology of the North Sobeagsan Massif, Korea- (풍기지역 소백산편마암복합체의 백립암상 변성작용 -북부 소백산육괴의 지각진화와 환경지질-)

  • 권용완;신의철;오창환;김형식;강지훈
    • The Journal of the Petrological Society of Korea
    • /
    • v.8 no.3
    • /
    • pp.183-202
    • /
    • 1999
  • The Sobeaksan Gneiss Complex in the Punggi area is composed of mainly mignatitic gneiss, porphyroblastic gneiss, garnet granitic gneiss and biotitie granitic gneiss. Metamorphic grade increase gradually from the amphibolite facies of northwestern part to the granulite facies of southwestern part in the study area. Representative mineral assemblage in the amphibolite facies is biotite-muscovite-K-feldspar-plagioclase$\pm$garnet$\pm$epidote, needle shape or fibrous sillimanite occur in transitional zone from the amphibolite facies to the granulite facies. In the granulite facies, the garnet-Opx granulite shows garnet-orthopyroxene-biotite-plagioclase, the metabasite shows clinopyroxene-plagioclase$\pm$hornblende$\pm$orthopyroxene$\pm$garnet and the migmatitic gneiss shows garnet-biotite-sillimanite-cordierite$\pm$spinel as representative mineral assemblage. Retrograde metamorphism after the granulite facies metamorphism made corindum and andalusite in the migmatitic gneiss and the thin layer garnet between clinopyroxene and plagioclase in the metabasites. The peak P-T conditions of the migmatitic gneiss and the garnet-Opx granulite are $916^{\circ}C$/6.6 kb and $826^{\circ}C$/6.3 kb, respectively. The P-T condition of biotite and plagioclase inclusion, which indicates the progressive condition of the granulie facies, within garnet is $866^{\circ}C$/7.5 kb and that of rim composition of garnet and biotite is $726^{\circ}C$/4.6 kb, which infer the clockwise P-T path of the granulite facies metamorphism. The temperatures caculated by the rim composition of garnet and biotite in the migmatitic gneiss and garnet granitic gneiss have a wide range of $556-741^{\circ}C$, which indicate that the retrograde metamorphism after the granulite facies metamorphism has effected differently. It is difficult to determine the P-T condition of the biotite granitic gneiss because less occurrence and higher spessartine content of garnet. The P-T condition of the thin layered garnet between clinopytoxene and plagioclase in the metabasite is $635-707^{\circ}C$/4.1-5.3 kb. This texture indicates the isobaric cooling(IBC) condition of the retrogressive metamorphism. As a result, the metamorphic evolution of the Punggi area has undergone the isobaric cooling after the granulite facies metamorphism which has undergone the clockwise P-T path.

  • PDF

Internal Structure and Movement History of the Keumwang Fault (금왕단층의 내부구조 및 단층발달사)

  • Kim, Man-Jae;Lee, Hee-Kwon
    • The Journal of the Petrological Society of Korea
    • /
    • v.25 no.3
    • /
    • pp.211-230
    • /
    • 2016
  • Detailed mapping along the Keumwang fault reveals a complex history of multiple brittle reactivations following late Jurassic and early Cretaceous ductile shearing. The fault core consists of a 10~50 m thick fault gouge layer bounded by a 30~100 m thick damaged zone. The Pre-cambrian gneiss and Jurassic granite underwent at least six distinct stages of fault movements based on deformation environment, time and mechanism. Each stage characterized by fault kinematics and dynamics at different deformation environment. Stage 1 generated mylonite series along the Keumwang shear zone by sinistral ductile shearing during late Jurassic and early Cretaceous. Stage 2 was a mostly brittle event generating cataclasite series superimposed on the mylonite series of the Keumwang shear zone. The roundness of pophyroclastes and the amount of matrix increase from host rocks to ultracataclasite indicating stronger cataclastic flow toward the fault core. At stage 3, fault gouge layer superimposed on the cataclasite generated during stage 2 and the sedimentary basins (Umsung and Pungam) formed along the fault by sinistral strike-slip movement. Fragments of older cataclasite suspended in the fault gouge suggest extensive reworking of fault rocks at brittle deformation environments. At stage 4, systematic en-echelon folds, joints and faults were formed in the sedimentary basins by sinistral strike-slip reactivation of the Keumwang fault. Most of the shearing is accommodated by slip along foliations and on discrete shear surfaces, while shear deformation tends to be relatively uniformly distributed within the fault damage zone developed in the mudrocks in the sedimentary basins. Fine-grained andesitic rocks intruded during stage 4. Stage 5 dextral strike-slip activity produced shear planes and bands in the andesitic rocks. ESR(Electron Spin Resonance) dates of fault gouge show temporal clustering within active period and migrating along the strike of the Keumwang fault during the stage 6 at the Quaternary period.

Tectonic evolution of the Central Ogcheon Belt, Korea (중부 옥천대의 지구조 발달과정)

  • Kang, Ji-Hoon;Hayasaka, Yasutaka;Ryoo, Chung-Ryul
    • The Journal of the Petrological Society of Korea
    • /
    • v.21 no.2
    • /
    • pp.129-150
    • /
    • 2012
  • The tectonic evolution of the Central Ogcheon Belt has been newly analyzed in this paper from the detailed geological maps by lithofacies classification, the development processes of geological structures, microstructures, and the time-relationship between deformation and metamorphism in the Ogcheon, Cheongsan, Mungyeong Buunnyeong, Busan areas, Korea and the fossil and radiometric age data of the Ogcheon Supergroup(OSG). The 1st tectonic phase($D^*$) is marked by the rifting of the original Gyeonggi Massif into North Gyeonggi Massif(present Gyeonggi Massif) and South Gyeonggi Massif (Bakdallyeong and Busan gneiss complexes). The Joseon Supergroup(JSG) and the lower unit(quartzose psammitic, pelitic, calcareous and basic rocks) of OSG were deposited in the Ogcheon rift basin during Early Paleozoic time, and the Pyeongan Supergroup(PSG) and its upper unit(conglomerate and pelitic rocks and acidic rocks) appeared in Late Paleozoic time. The 2nd tectonic phase(Ogcheon-Cheongsan phase/Songnim orogeny: D1), which occurred during Late Permian-Middle Triassic age, is characterized by the closing of Ogcheon rift basin(= the coupling of the North and South Gyeonggi Massifs) in the earlier phase(Ogcheon subphase: D1a), and by the coupling of South China block(Gyeonggi Massif and Ogcheon Zone) and North China block(Yeongnam Massif and Taebaksan Zone) in the later phase(Cheongsan subphase: D1b). At the earlier stage of D1a occurred the M1 medium-pressure type metamorphism of OSG related to the growth of coarse biotites, garnets, staurolites. At its later stage, the medium-pressure type metamorphic rocks were exhumed as some nappes with SE-vergence, and the giant-scale sheath fold, regional foliation, stretching lineation were formed in the OSG. At the D1b subphase which occurs under (N)NE-(S)SW compression, the thrusts with NNE- or/and SSW-vergence were formed in the front and rear parts of couple, and the NNE-trending Cheongsan shear zone of dextral strike-slip and the NNE-trending upright folds of the JSG and PSG were also formed in its flank part, and Daedong basin was built in Korean Peninsula. After that, Daedong Group(DG) of the Late Triassic-Early Jurassic was deposited. The 3rd tectonic phase(Honam phase/Daebo orogeny: D2) occurred by the transpression tectonics of NNE-trending Honam dextral strike-slip shearing in Early~Late Jurassic time, and formed the asymmetric crenulated fold in the OSG and the NNE-trending recumbent folds in the JSG and PSG and the thrust faults with ESE-vergence in which pre-Late Triassic Supergroups override DG. The M2 contact metamorphism of andalusite-sillimanite type by the intrusion of Daebo granitoids occurred at the D2 intertectonic phase of Middle Jurassic age. The 4th tectonic phase(Cheongmari phase: D3) occurred under the N-S compression at Early Cretaceous time, and formed the pull-apart Cretaceous sedimentary basins accompanying the NNE-trending sinistral strike-slip shearing. The M3 retrograde metamorphism of OSG associated with the crystallization of chlorite porphyroblasts mainly occurred after the D2. After the D3, the sinistral displacement(Geumgang phase: D4) occurred along the Geumgang fault accompanied with the giant-scale Geumgang drag fold with its parasitic kink folds in the Ogcheon area. These folds are intruded by acidic dykes of Late Cretaceous age.