• Title/Summary/Keyword: 반사 계수

Search Result 810, Processing Time 0.034 seconds

NDVI Based on UAVs Mapping to Calculate the Damaged Areas of Chemical Accidents (화학물질사고 피해영역 산출을 위한 드론맵핑 기반의 정규식생지수 활용방안 연구)

  • Lim, Eontaek;Jung, Yonghan;Kim, Seongsam
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_3
    • /
    • pp.1837-1846
    • /
    • 2022
  • The annual increase in chemical accidents is causing damage to life and the environment due to the spread and residual of substances. Environmental damage investigation is more difficult to determine the geographical scope and timing than human damage investigation. Considering the reality that there is a lack of professional investigation personnel, it is urgent to develop an efficient quantitative evaluation method. In order to improve this situation, this paper conducted a chemical accidents investigation using unmanned aerial vehicles(UAV) equipped with various sensors. The damaged area was calculated by Ortho-image and strength of agreement was calculated using the normalized difference vegetation index image. As a result, the Cohen's Kappa coefficient was 0.649 (threshold 0.7). However, there is a limitation in that analysis has been performed based on the pixel of the normalized difference vegetation index. Therefore, there is a need for a chemical accident investigation plan that overcomes the limitations.

Comparative Analysis of NDWI and Soil Moisture Map Using Sentinel-1 SAR and KOMPSAT-3 Images (KOMPSAT-3와 Sentinel-1 SAR 영상을 적용한 토양 수분도와 NDWI 결과 비교 분석)

  • Lee, Jihyun;Kim, Kwangseob;Lee, Kiwon
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_4
    • /
    • pp.1935-1943
    • /
    • 2022
  • The development and application of a high-resolution soil moisture mapping method using satellite imagery has been considered one of the major research themes in remote sensing. In this study, soil moisture mapping in the test area of Jeju Island was performed. The soil moisture was calculated with optical images using linearly adjusted Synthetic Aperture Radar (SAR) polarization images and incident angle. SAR Backscatter data, Analysis Ready Data (ARD) provided by Google Earth Engine (GEE), was used. In the soil moisture processing process, the optical image was applied to normalized difference vegetation index (NDVI) by surface reflectance of KOMPSAT-3 satellite images and the land cover map of Environmental Systems Research Institute (ESRI). When the SAR image and the optical images are fused, the reliability of the soil moisture product can be improved. To validate the soil moisture mapping product, a comparative analysis was conducted with normalized difference water index (NDWI) products by the KOMPSAT-3 image and those of the Landsat-8 satellite. As a result, it was shown that the soil moisture map and NDWI of the study area were slightly negative correlated, whereas NDWI using the KOMPSAT-3 images and the Landsat-8 satellite showed a highly correlated trend. Finally, it will be possible to produce precise soil moisture using KOMPSAT optical images and KOMPSAT SAR images without other external remotely sensed images, if the soil moisture calculation algorithm used in this study is further developed for the KOMPSAT-5 image.

Wideband 6-port Phase Correlator Using Caxial Cable Impedance Transformer and Wireline Coupler (동축선 임피던스 변환기와 Wireline Coupler를 이용한 광대역 6-단자 위상 상관기)

  • Park, Ung-hee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.8
    • /
    • pp.1188-1195
    • /
    • 2022
  • The 6-port phase correlator consists of one in-phase power divider and three 3-dB 90-degree phase difference power dividers, and is mainly used in a demodulation circuit that determines the phase of an input signal. This paper proposes the wideband 6-port phase correlator that consists of an in-phase power divider using a wideband 2:1 impedance transformer with three 37.5-Ω coaxial cables, and a 3-dB 90-degree phase difference power divide using Wireline. The proposed wideband phase correlator fabricated at a center frequency of 1000MHz has the value of the input reflection coefficient(S11 and S22) -14dB or less in the frequency range of 640~1270MHz. Also, the signal transmission characteristic(Si1), from the in-phase power divider input port to four output ports, has the amplitude of -6.5±0.6dB and the phase error of within ±3.4°, and the signal transmission characteristic(Si2), from the 90 degree phase difference power divider input port to four output ports, has the amplitude of -6.1±0.6dB and the phase error of within ±6.2°.

Design and Fabrication of Dual Linear Polarization Stack Antenna for 4.7GHz Frequency Band (4.7 GHz 대역에서 동작하는 이중 선형편파 적층 안테나의 설계 및 제작)

  • Joong-Han Yoon;Chan-Se Yu
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.2
    • /
    • pp.251-258
    • /
    • 2023
  • In this paper, we propose DLP(Dual Linear Polarization) stack antenna for private network. The proposed antenna has general stack structure and design airgap between two substrate to obtain the maximum gain. Also, to improve cross polarization isolation, two feeding port is designed to separate for each substrate. The size of each patch antenna is 17.80 mm(W1)×16.70 mm(L1) for lower patch and 18.56 mm(W2)×18.73 mm(L2) for upper patch, which is designed on the FR-4 substrate which thickness (h) is 1.6 mm, and the dielectric constant is 4.3, and which is 40.0 mm(W)×40.0 mm(L) for total size of substrate. From the fabrication and measurement results, bandwidths of 100 MHz (4.74 to 4.84 GHz) for feeding port 1, and 150 MHz (4.67 to 4.82 GHz) for feeding port 2 are obtained on the basis of -10 dB return loss and transmission coefficient S21 is got under the -20 dB. Also, cross polarization isolation between each feeding port obtained

Comparison of CNN and GAN-based Deep Learning Models for Ground Roll Suppression (그라운드-롤 제거를 위한 CNN과 GAN 기반 딥러닝 모델 비교 분석)

  • Sangin Cho;Sukjoon Pyun
    • Geophysics and Geophysical Exploration
    • /
    • v.26 no.2
    • /
    • pp.37-51
    • /
    • 2023
  • The ground roll is the most common coherent noise in land seismic data and has an amplitude much larger than the reflection event we usually want to obtain. Therefore, ground roll suppression is a crucial step in seismic data processing. Several techniques, such as f-k filtering and curvelet transform, have been developed to suppress the ground roll. However, the existing methods still require improvements in suppression performance and efficiency. Various studies on the suppression of ground roll in seismic data have recently been conducted using deep learning methods developed for image processing. In this paper, we introduce three models (DnCNN (De-noiseCNN), pix2pix, and CycleGAN), based on convolutional neural network (CNN) or conditional generative adversarial network (cGAN), for ground roll suppression and explain them in detail through numerical examples. Common shot gathers from the same field were divided into training and test datasets to compare the algorithms. We trained the models using the training data and evaluated their performances using the test data. When training these models with field data, ground roll removed data are required; therefore, the ground roll is suppressed by f-k filtering and used as the ground-truth data. To evaluate the performance of the deep learning models and compare the training results, we utilized quantitative indicators such as the correlation coefficient and structural similarity index measure (SSIM) based on the similarity to the ground-truth data. The DnCNN model exhibited the best performance, and we confirmed that other models could also be applied to suppress the ground roll.

Design and Fabrication of Dual Linear Polarization Patch Antenna with Aperture Coupled Feeding Structure (개구 결합 급전 구조를 갖는 이중 선형편파 패치 안테나의 설계 및 제작)

  • Joong-Han Yoon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.6
    • /
    • pp.1015-1022
    • /
    • 2023
  • In this paper, we propose DLP(Dual Linear Polarization) antenna with aperture coupled feeding structure for private network. The proposed antenna has general aperture coupled structure and design two port between top and bottom layer to obtain the enhanced isolation. Also, The size of each substrate(top and bottom layer) is 34.0 mm(W)×34.0 mm(L), which is designed on the FR-4 substrate which thickness (h) is 1.0 mm, and the dielectric constant is 4.4. Also, the size of patch antenna is 12.70 mm(W2)×14.60 mm(L3), and it is located on the top layer. The size of feeding line is 24.0 mm(W2)×1.6 mm(L3), and is located at the bottom layer Also, rectangular slot is located on the ground plane between top layer and bottom layer. From the fabrication and measurement results, bandwidths of 300 MHz (4.52 to 4.82 GHz) for feeding port 1, and 170 MHz (4.65 to 4.82 GHz) for feeding port 2 are obtained on the basis of -10 dB return loss and transmission coefficient S21 is got under the -30 dB. Also, cross polarization isolation between each feeding port obtained

Single-Channel Seismic Data Processing via Singular Spectrum Analysis (특이 스펙트럼 분석 기반 단일 채널 탄성파 자료처리 연구)

  • Woodon Jeong;Chanhee Lee;Seung-Goo Kang
    • Geophysics and Geophysical Exploration
    • /
    • v.27 no.2
    • /
    • pp.91-107
    • /
    • 2024
  • Single-channel seismic exploration has proven effective in delineating subsurface geological structures using small-scale survey systems. The seismic data acquired through zero- or near-offset methods directly capture subsurface features along the vertical axis, facilitating the construction of corresponding seismic sections. However, substantial noise in single-channel seismic data hampers precise interpretation because of the low signal-to-noise ratio. This study introduces a novel approach that integrate noise reduction and signal enhancement via matrix rank optimization to address this issue. Unlike conventional rank-reduction methods, which retain selected singular values to mitigate random noise, our method optimizes the entire singular value spectrum, thus effectively tackling both random and erratic noises commonly found in environments with low signal-to-noise ratio. Additionally, to enhance the horizontal continuity of seismic events and mitigate signal loss during noise reduction, we introduced an adaptive weighting factor computed from the eigenimage of the seismic section. To access the robustness of the proposed method, we conducted numerical experiments using single-channel Sparker seismic data from the Chukchi Plateau in the Arctic Ocean. The results demonstrated that the seismic sections had significantly improved signal-to-noise ratios and minimal signal loss. These advancements hold promise for enhancing single-channel and high-resolution seismic surveys and aiding in the identification of marine development and submarine geological hazards in domestic coastal areas.

Verification of Kompsat-5 Sigma Naught Equation (다목적실용위성 5호 후방산란계수 방정식 검증)

  • Yang, Dochul;Jeong, Horyung
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.6_3
    • /
    • pp.1457-1468
    • /
    • 2018
  • The sigma naught (${\sigma}^0$) equation is essential to calculate geo-physical properties from Synthetic Aperture Radar (SAR) images for the applications such as ground target identification,surface classification, sea wind speed calculation, and soil moisture estimation. In this paper, we are suggesting new Kompsat-5 (K5) Radar Cross Section (RCS) and ${\sigma}^0$ equations reflecting the final SAR processor update and absolute radiometric calibration in order to increase the application of K5 SAR images. Firstly, we analyzed the accuracy of the K5 RCS equation by using trihedral corner reflectors installed in the Kompsat calibration site in Mongolia. The average difference between the calculated values using RCS equation and the measured values with K5 SAR processor was about $0.2dBm^2$ for Spotlight and Stripmap imaging modes. In addition, the verification of the K5 ${\sigma}^0$ equation was carried out using the TerraSAR-X (TSX) and Sentinel-1A (S-1A) SAR images over Amazon rainforest, where the backscattering characteristics are not significantly affected by the seasonal change. The calculated ${\sigma}^0$ difference between K5 and TSX/S-1A was less than 0.6 dB. Considering the K5 absolute radiometric accuracy requirement, which is 2.0 dB ($1{\sigma}$), the average difference of $0.2dBm^2$ for RCS equation and the maximum difference of 0.6 dB for ${\sigma}^0$ equation show that the accuracies of the suggested equations are relatively high. In the future, the validity of the suggested RCS and ${\sigma}^0$ equations is expected to be verified through the application such as sea wind speed calculation, where quantitative analysis is possible.

Relation between the Heat Budget and the Cold Water in the Yellow Sea in Winter (동계의 열수지 황해냉수와의 관계)

  • Han, Young-Ho
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.14 no.1
    • /
    • pp.1-14
    • /
    • 1978
  • To study the fluctuation of cold water in the East China Sea in summer heat budget of the Yellow Sea in winter was analysed based on the oceanographic and meteorological data compiled from 1951 to 1974. The maintain value of insolation was observed in December($160{\sim}190ly/day$), while the maximum in February ($250{\sim}260ly/day$). The range of the annual variation was found to be less than 50 ly/day. The value of the radiation term ($Q_s-Q_r-Q_h$) was remarkably small (mean 20 ly/day) in winter. It was negative value in December and January, and a positive value in February. The minimum total heat exchange from the sea ($Q_({h+c}$) was found value (471 ly/day) in February 1962, and the maximum (882 ly/day) in January 1963. The annual total heat exchange was minimum (588 ly/day) in 1962, and maximum (716 ly/day) in 1968. If the average deviation of mean water temperature at 50m depth layer were assumed to be the horizontal index ($C_h$) of colder water, $C_h$ is $C_h=\frac{{\Sigma}\limit_i\;A_i\;T_i}{{\Sigma}\limit_i\;A_i}$ where $A_i$ denotes the area of isothermal region and $T_i$ the value of deviation from mean sea water temperature. The vertical index ($C_v$) of cold water can be expressed similarly. Consequently the total index (C) of cold water equals to the sum of the two components, i.e. $C=C_h$$C_v$. Taking the deviation of mean sea surface temperature(T'w) in the third ten-day of Novembers in the Yellow Sea as the value of the initial condition, the following expressions are deduced : $C-T'w=32.06 - 0.049$ $\;Q_T$ $C_h-T'w/2=12.20-0.019\;Q_T$ $C_v-T'w/2=18.07-0.027\;Q_T$ where $Q_T$ denotes the total heat exchange of the sea. The correlation coefficients of these regression equations were found to be greater than 0.9. Heat budget was 588 ly/day in winter, and minimum water temperature of cold water was $18^{\circ}C$ in summer of 1962. The isotherm of $23^{\circ}C$ extended narrowly to southward up to $29^{\circ}N$ in summer. However, heat budget was 716 ly/day, and minimum water temperature of cold water was $12^{\circ}C$ in summer of 1968. The isotherm of $23^{\circ}C$ extended widely to southward up to $28^{\circ}30'N$ in summer. As a result of the present study, it may be concluded that the fluctuation of cold water of the East China Sea in summer can be predicted by the calculation of heat budget of the Yellow Sea in winter.

  • PDF

Improving Usage of the Korea Meteorological Administration's Digital Forecasts in Agriculture: 2. Refining the Distribution of Precipitation Amount (기상청 동네예보의 영농활용도 증진을 위한 방안: 2. 강수량 분포 상세화)

  • Kim, Dae-Jun;Yun, Jin I.
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.15 no.3
    • /
    • pp.171-177
    • /
    • 2013
  • The purpose of this study is to find a scheme to scale down the KMA (Korea Meteorological Administration) digital precipitation maps to the grid cell resolution comparable to the rural landscape scale in Korea. As a result, we suggest two steps procedure called RATER (Radar Assisted Topography and Elevation Revision) based on both radar echo data and a mountain precipitation model. In this scheme, the radar reflection intensity at the constant altitude of 1.5 km is applied first to the KMA local analysis and prediction system (KLAPS) 5 km grid cell to obtain 1 km resolution. For the second step the elevation and topography effect on the basis of 270 m digital elevation model (DEM) which represented by the Parameter-elevation Regressions on Independent Slopes Model (PRISM) is applied to the 1 km resolution data to produce the 270 m precipitation map. An experimental watershed with about $50km^2$ catchment area was selected for evaluating this scheme and automated rain gauges were deployed to 13 locations with the various elevations and slope aspects. 19 cases with 1 mm or more precipitation per day were collected from January to May in 2013 and the corresponding KLAPS daily precipitation data were treated with the second step procedure. For the first step, the 24-hour integrated radar echo data were applied to the KLAPS daily precipitation to produce the 1 km resolution data across the watershed. Estimated precipitation at each 1 km grid cell was then regarded as the real world precipitation observed at the center location of the grid cell in order to derive the elevation regressions in the PRISM step. We produced the digital precipitation maps for all the 19 cases by using RATER and extracted the grid cell values corresponding to 13 points from the maps to compare with the observed data. For the cases of 10 mm or more observed precipitation, significant improvement was found in the estimated precipitation at all 13 sites with RATER, compared with the untreated KLAPS 5 km data. Especially, reduction in RMSE was 35% on 30 mm or more observed precipitation.