Proceedings of the Korea Society for Industrial Systems Conference
/
2002.06a
/
pp.248-259
/
2002
최근의 새로운 교수 학습 형태인 웹기반 교육에서의 가장 중요한 요소는 시.공간적으로 떨어져 있는 학습자의 학습 상황을 파악하고 분석하여, 학습자에게 적절한 학습내용과 과정을 제시하는 하는 것이 무엇보다도 중요하다. 본 연구에서는 웹기반 교수 시스템에서 학습자의 수준에 맞는 적합한 학습 내용과 평가 문제를 제공하고, 그 평가 결과를 분석하여 반복학습 및 심화학습을 효과적으로 제공하고, 차기 학습을 할 경우에 이에 기초하여 적절한 학습이 이루어질 수 있도록 한다. 이를 위해 코스웨어를 설계시 학습목표의 중요도, 학습내용의 난이도, 학습목표와 학습내용과의 관련성과 각 항목의 가중치를 고려한 퍼지 함수에 의해 퍼지 소속성을 가진 퍼지 언어 변수로 각 프레임에 대한 수준을 표현한다. 또한, 학습의 평가도 문제의 난이도, 관련학습 자료의 난이도, 관련 학습목표의 중요도, 각각의 관련성을 고려하여 퍼지 함수에 의해 언어 변수로 평가된다. 이와 같이 퍼지 함수를 이용함으로써 학습자의 수준을 분석하고, 이에 적절한 학습 및 평가 내용을 제공하는데 여러가지 다양하고 불확실한 요소들을 고려하여 처리함으로써 보다 융통성 있고 효과적인 교수 학습 방법이 될 수 있다.
Proceedings of the Korean Society of Computer Information Conference
/
2009.01a
/
pp.153-158
/
2009
SCORM(Sharable Content Object Reference Model)은 세계 e-Learning 표준화 분야에서 가장 주목을 받고 있는 ADL(Advanced Distributed Learning)의 표준화 모델이다. SCORM2004 RTE(Run-Time Environment) 에서 상호작용 데이터 모델(Interaction Data Model)의 기능을 활용하면 LMS(Learning Management System)가 문항을 자동 생성하여 문제은행을 보다 쉽게 구현할 수 있다. 내용학습 후에 형성평가를 실시하기 위한 문항을 학습자가 원하는 만큼 공급할 수 있다. 본 연구는 일반계 고등학교 수학교과의 삼각함수 성질을 학습하는 데 있어 RTE의 상호작용 데이터 모델로 구현한 문제은행을 갖춘 반복학습 콘텐츠를 개발하여 학습효과를 높이고자 한다.
효율적인 학습 방법들을 도입한 교육용 시스템에 대한 연구가 활성화되어 있는 가운데, 사람의 뇌의 장기기억 메커니즘을 이용하여 교육용 시스템과 다양한 방향에서 적용하고 그 유효성을 밝히는 연구들이 많이 진행되고 있다. 학생들에게 학습에 용이한 교육 시스템을 적용함에 있어 시간과 장소에 상관없이 접근이 용이하도록 인터넷과 연계된 시스템의 유용성은 이미 입증된 바 있다. 본 연구에서는 웹기반 교육 시스템에서 장기기억이 용이하도록 학습 내용의 구성과 에빙하우스 망각 곡선에 기반한 효율적인 반복학습 시스템을 설계한다.
최근에 웹 기반 교육 시스템으로서 다양한 온라인 학습에 대한 새로운 교수 모형이 제시되고 있다. 또한, 학습자의 요구에 맞는 코스웨어의 주문이 증가되고 있는 추세이며 그에 따라 뭔 기반 교육 시스템에 효율적이고 자동화된 교육 에이전트의 필요성이 인식되고 있다. 그러나 현재 연구되고 있는 많은 교육 시스템들은 학습자 성향에 맞는 코스를 적절히 서비스해 주지 못할 뿐 아니라 지속적인 피드백과 학습자가 코스를 학습함에 있어서 취약한 부분을 재학습 할 수 있도록 도와주는 서비스를 원활히 제공하지 못하고 있다. 본 논문에서는 취약성 분석 알고리즘을 이용한 학습자 중심의 코스 스케쥴링 멀티 에이전트 시스템을 제안한다. 제안한 시스템은 먼저 학습자의 학습을 지속적으로 모니터링하고 평가하여 개인 학습자의 학습 성취도를 계산하며, 이 성취도를 에이전트의 스케줄에 적용하여 학습자에게 적합한 코스를 제공하고, 학습자는 이러한 코스에 따라 능력에 맞는 반복된 학습을 통하여 적극적인 완전학습을 수행하게 된다.
The Journal of Korean Institute of Communications and Information Sciences
/
v.26
no.7A
/
pp.1182-1188
/
2001
인터넷 환경 아래에서 멀티미디어 매체 및 컴퓨터 통신 기술의 발전은 사회전반의 변혁을 가속화하게 되었다. 교육에 있어서도 수동적인 자료 중심으로 상호작용하고 시간과 공간을 초월하는 새로운 구조에 대한 연구가 활발히 진행되어 왔다. 새로운 교수-학습 활동의 형태로 웹을 기반으로 한 교육(WBI : Web-Based Instruction)이라는 모형이 제시되고 있다. 또한, 학습자의 필요에 응하는 코스웨어의 제공이 요구되고 있으며 이에 따라 웹 기반 교육 시스템에 효율적이고 자동화된 교육 에이전트의 필요성이 인식되고 있다. 그러나 현재 연구되고 있는 많은 교육 시스템들은 학습자가 원하는 코스를 적절히 제공하지 못하고, 계속적인 피드백과 부족한 부분을 적절히 반복 학습할 수 있도록 인도하지 못하고 있다. 본 논문에서는 학습자의 성취도 생성 알고리즘을 이용한 코스 스케줄링 멀티 에이전트 시스템을 설계하고 구현함으로써 보다 효율적인 학습을 유도한다. 제안한 시스템은 학습자의 학습활동을 지속적으로 모니터링하고 평가하여 개인 학습자의 학습 성취도를 계산하며, 이 성취도를 에이전트의 스케줄에 적용하여 학습자에게 적합한 코스를 제공하고, 학습자는 이러한 코스에 따라 능력에 맞는 반복된 학습을 통하여 적극적인 완전학습을 수행하게 된다.
In usual language models(LMs), the probability has been estimated by selecting highly frequent words from a large text side database. However, in case of adopting LMs in a specific task, it is unnecessary to using the general method; constructing it from a large size tent, considering the various kinds of cost. In this paper, we propose a construction method of LMs using a small size text database in order to be used in specific tasks. The proposed method is efficient in increasing the low frequent words by applying same sentences iteratively, for it will robust the occurrence probability of words as well. We carried out continuous speech recognition(CSR) experiments on 200 sentences uttered by 3 speakers using LMs by iterative teaming(IL) in a air flight reservation task. The results indicated that the performance of CSR, using an IL applied LMs, shows an 20.4% increased recognition accuracy compared to those without it. This system, using the IL method, also shows an average of 13.4% higher recognition accuracy than the previous one, which uses context-free grammar(CFG), implying the effectiveness of it.
Proceedings of the Korean Information Science Society Conference
/
1998.10c
/
pp.339-341
/
1998
다층 퍼셉트론 학습은 학습 데이터의 능동적인 선택 여부에 따라 능동적 학습(Active learning)과 피동적 학습(Passive learning)으로 구분할 수 있다. 기존의 능동적 학습 방법들은 학습 데이터의 중요도를 측정할 수 있는 기준(measure)을 제시하고 이 기준에 따라 학습 데이터를 선택하는 방법을 취하고 있다. 이 방법들은 학습 데이터 선택을 위해 Hessian Approximation과 같은 복잡한 계산이나 학습 데이터를 선택하는 과정에 있어서 데이터의 중요도를 평가하기 위한 반복적인 계산을 필요로 한다. 본 논문에서는 학습 데이터 선택 시 반복적인 계산이 필요하지 않는 비교사 학습을 이용한 능동적 학습 데이터 선택 방법을 제안하고 그 수렴 특성과 일반화 성능을 분석한다. 또한 비교 실험을 통하여 제안된 방법이 기존의 능동적 학습방법보다 간단한 계산만으로 수렴 속도를 향상시키며 일반화에도 뒤떨어지지 않음을 보인다.
본 연구에서는 학습자의 수준에 맞는 적합한 학습 내용과 평가 문제를 제공하고, 그 평가 결과를 분석하여 반복학습 및 심화학습을 효과적으로 제공하는 웹기반 퍼지 교수 시스템을 제안한다. 이를 위해 코스웨어를 설계시 학습목표의 중요도, 학습내용의 난이도, 학습목표와 학습내용과의 관련성과 각 항목의 가중치를 고려한 퍼지 함수에 의해 퍼지 소속성을 가진 퍼지 언어 변수로 각 프레임에 대한 수준을 표현한다. 이와 같이 퍼지 함수를 이용함으로써 학습자의 수준을 분석하고, 이에 적절한 학습 및 평가 내용을 제공하는데 여러가지 다양하고 불확실한 요소들을 고려하여 처리함으로써 보다 융통성 있고 효과적인 교수 학습 방법을 지원할 수 있다.
Ryu, Jae-Hyun;Noh, Yunseok;Choi, Su Jeong;Park, Se-Young
Annual Conference on Human and Language Technology
/
2018.10a
/
pp.120-125
/
2018
문서 요약 문제는 최근 심층 신경망을 활용하여 활발히 연구되고 있는 문제 중 하나이다. 많은 기존 연구들이 주로 시퀀스-투-시퀀스 모델을 활용하여 요약을 수행하고 있으나, 아직 양질의 요약을 생성하기에는 많은 문제점이 있다. 시퀀스-투-시퀀스 모델을 활용한 요약에서 가장 빈번히 나타나는 문제 중 하나는 요약문의 생성과정에서 단어나 구, 문장이 불필요하게 반복적으로 생성되는 것이다. 이를 해결하기 위해 다양한 연구가 이루어지고 있으며, 이들 대부분은 요약문의 생성 과정에서 정확한 정보를 주기 위해 모델에 여러 모듈을 추가하였다. 하지만 기존 연구들은 생성 단어가 정답 단어로 나올 확률을 최대화 하도록 학습되기 때문에, 생성하지 말아야 하는 단어에 대한 학습이 부족하여 반복 생성 문제를 해결하는 것에는 한계가 있다. 따라서 본 논문에서는 기존 요약 모델의 복잡도를 높이지 않고, 단어 생성 이력을 직접적으로 이용하여 반복 생성을 제어하는 모델을 제안한다. 제안한 모델은 학습할 때 생성 단계에서 이전에 생성한 단어가 이후에 다시 생성될 확률을 최소화하여 실제 모델이 생성한 단어가 반복 생성될 확률을 직접적으로 제어한다. 한국어 데이터를 이용하여 제안한 방법을 통해 요약문을 생성한 결과, 비교모델보다 단어 반복이 크게 줄어들어 양질의 요약을 생성하는 것을 확인할 수 있었다.
Journal of the Institute of Electronics Engineers of Korea SP
/
v.39
no.4
/
pp.462-469
/
2002
While the conventional K-means algorithms use a fixed weight to design a vector codebook for all learning iterations, the proposed method employs a variable weight for learning iterations. The weight value of two or more beyond a convergent region is applied to obtain new codevectors at the initial learning iteration. The number of learning iteration applying a variable weight must be decreased for higher weight value at the initial learning iteration to design a better codebook. To enhance the splitting method that is used to generate an initial codebook, we propose a new method, which reduces the error between a representative vector and the member of training vectors. The method is that the representative vector with maximum squared error is rejected, but the vector with minimum error is splitting, and then we can obtain the better initial codevectors.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.