• Title/Summary/Keyword: 반복전단응력비

Search Result 73, Processing Time 0.035 seconds

Liquefaction Resistance of Pohang Sand (포항모래의 액상화 저항 특성에 관한 연구)

  • Park, Sung-Sik;Nong, Zhenzhen;Choi, Sun-Gyu;Moon, Hong-Duk
    • Journal of the Korean Geotechnical Society
    • /
    • v.34 no.9
    • /
    • pp.5-17
    • /
    • 2018
  • A magnitude 5.4 earthquake struck the city of Pohang, North Gyeongsang Province, South Korea on November 15, 2017. Many sand volcanoes were observed on paddy fields, parks and roads. This phenomenon was the first to be observed as a sign of soil liquefaction in South Korea. In this study, two different kinds of ejected Pohang sands were collected from a liquefied paddy field. Those sands were reconstituted into loose and dense conditions and then a series of cyclic simple shear tests were conducted under confining stresses of 100 and 200 kPa. A real earthquake motion was also repetitively applied to the specimen. As a result of constant shear stress tests, the cyclic resistance ratio (CRR) of loose sand was 0.12-0.14, while the CRR value of dense sand was 0.17-0.21. It was shown that the relative density was more influencing factor on liquefaction resistance than the sand types and initial confining stress. When a real Pohang earthquake motion was repetitively applied to the specimen, a loose sand was liquefied at the second earthquake motion but the dense sand at the third earthquake motion.

차분법에 의한 복합 박판에서의 비선형 응력 해석

  • 현혜정;김치경
    • Proceedings of the Korean Institute of Industrial Safety Conference
    • /
    • 2000.11a
    • /
    • pp.429-434
    • /
    • 2000
  • 본 연구에서는 등분포하중을 받는 laminated 박판의 거동해석을 제시하였다. 접착한 두 박판의 비선형 지배방정식을 Von Karman 식을 이용하여 유도하고 박판의 거동을 차분법을 이용하여 수치해석 한다. Interlayer에서의 전단변형을 고려하여 지배방정식에 포함시켜 하중 증분법(load incremental method)으로 기하학 비선형 해석을 수행한다. 하중 증분법에 따른 반복법을 도입하여 비선형 방정식을 해석했다. 해석방법의 타당성을 입증하기 위하여 해석결과들을 기존의 문헌의 결과와 비교, 검토함으로써 본 논문에서 제시한 이론 및 해석방법의 타당성을 입증한다. 차분법의 하중 증분법 알고리즘을 개발하여 예제문제에 대한 수치해석 결과들을 논하였다.(중략)

  • PDF

Effect of Gravel Size on Shear Behavior of Sand with Dispersed Gravels (모래 지반 내에 포함된 자갈의 크기가 전단거동에 미치는 영향)

  • Park, Sung-Sik;Kim, Young-Su
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.1C
    • /
    • pp.39-51
    • /
    • 2011
  • A large number of small particles may surround large gravels which are non-contact and dispersed within the ground. The strength of such soil may be influenced by the mechanical properties of a few coarse gravels. A specimen or gravel size can impact the shear characteristics of sand with dispersed gravels. In this study, the size of gravel and specimen varies and its effect on shear characteristics of a granular soil was evaluated. Five sizes of gravels with 7, 12, 15, 18, and 22 mm were used repeatedly and inserted in the middle of each compacted layer. A specimen consists of five or ten equal layers depending on gravel size, which is 5 cm or 10 cm in diameter and 10 cm or 20 cm in height. An embedded gravel ratio by weight is 3% and constant for all cases with gravel. After consolidation, a series of undrained triaxial compression tests under three confining pressures was performed on sand with dispersed gravels. The maximum deviator stress of a specimen with 10 cm in diameter was at average 30% higher than that with 5 cm in diameter and increased up to 90% for a specimen with gravel. When a gravel size of 7 and 12 mm used, the maximum deviator stress of a specimen with 10 cm in diameter was higher than that of one without gravel, whereas the maximum deviator stress of a specimen with 5 cm was higher or lower than that without gravel. The gravel size and specimen diameter influenced the undrained behavior of sand. The maximum deviator stress of a specimen with gravel either increased or decreased compared to that without gravel, depending on the ratio of gravel size to specimen diameter, 1/5.

Mechanical Properties for Methyl Cellulose(MC) Ingredient ER Fluids According to the Numbers of the Electrical Field Cycles (전기장 싸이클 수에 따른 MC성분 ER유체의 기계적성질)

  • 김옥삼;박우철
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.37 no.4
    • /
    • pp.296-301
    • /
    • 2001
  • Electro-Rheological (ER) fluids belong to a class of colloidal suspensions whose global characteristics can be controlled by the imposition of an appropriate external electrical field upon the fluid domain. The ER fluids for smart hydraulic system are a class of colloidal dispersion which exhibit large reversible changes in their rheological behavior when subjected to external electrical fields. This paper presents experimental results on mechanical properties of an ER fluids subjected to electrical fatigues. As a first step, ER fluid is made of methyl cellulose(MC) ingredient choosing 25% of particle weight-concentration. Following the construction of test for mechanical properties of ER fluid, the shear stress, dynamic yield stress and current density of the ER fluids are experimentally distilled as a function of electric field cycles. The mechanical properties test of operated ER fluids are distilled and compared with those of unused ER fluids.

  • PDF

Characteristic Analysis of Permanent Deformation in Railway Track Soil Subgrade Using Cyclic Triaxial Compression Tests (국내 철도 노반 흙재료의 반복재하에 따른 영구변형 발생 특성 및 상관성 분석)

  • Park, Jae Beom;Choi, Chan Yong;Kim, Dae Sung;Cho, Ho Jin;Lim, Yu Jin
    • Journal of the Korean Society for Railway
    • /
    • v.20 no.1
    • /
    • pp.64-75
    • /
    • 2017
  • The role of a track subgrade is to provide bearing capacity and distribute load transferred to lower foundation soils. Track subgrade soils are usually compacted by heavy mechanical machines in the field, such that sometimes they are attributed to progressive residual settlement during the service after construction completion of the railway track. The progressive residual settlement generated in the upper part of a track subgrade is mostly non-recoverable plastic deformation, which causes unstable conditions such as track irregularity. Nonetheless, up to now no design code for allowable residual settlement of subgrade in a railway trackbed has been proposed based on mechanical testing, such as repetitive triaxial testing. At this time, to check the DOC or stiffness of the soil, field test criteria for compacted track subgrade are composed of data from RPBT and field compaction testing. However, the field test criteria do not provide critical design values obtained from mechanical test results that can offer correct information about allowable permanent deformation. In this study, a test procedure is proposed for permanent deformation of compacted subgrade soil that is used usually in railway trackbed in the laboratory using repetitive triaxial testing. To develop the test procedure, an FEA was performed to obtain the shear stress ratio (${\tau}/{\tau}_f$) and the confining stress (${\sigma}_3$) on the top of the subgrade. Comprehensive repetitive triaxial tests were performed using the proposed test procedure on several field subgrade soils obtained in construction sites of railway trackbeds. A permanent deformation model was proposed using the test results for the railway track.

Shear Strength Characteristics of Weathered Granite Soil below the Freezing Point (동결온도 조건에서의 화강풍화토 전단강도 특성에 관한 연구)

  • Lee, Joonyong;Choi, Changho
    • Journal of the Korean GEO-environmental Society
    • /
    • v.14 no.7
    • /
    • pp.19-29
    • /
    • 2013
  • Analysis via classical soil mechanics theory is either ineffective or inappropriate for fully describing stress distribution or failure conditions in cold regions, since mechanical properties of soils in cold regions are different from those reported in the classical soil mechanics theory. Therefore, collecting and analyzing technical data, and systematic and specialized research for cold regions are required for design and construction of the structure in cold regions. Freezing and thawing repeat in active layer of permafrost region, and a loading condition affecting the structure changes. Therefore, the reliable analysis of mechanical properties of frozen soils according to various conditions is prerequisite for design and construction of the structure in cold regions, since mechanical properties of frozen soils are sensitive to temperature condition, water content, grain size, relative density, and loading rate. In this research, the direct shear apparatus which operates at 30 degrees below zero and large-scaled low temperature chamber are used for evaluating shear strength characteristics of frozen soils. Weathered granite soil is used to analyzed the shear strength characteristics with varying freezing temperature condition, vertical confining pressure, relative density, and water content. This research shows that the shear strength of weathered granite soil is sensitively affected by various conditions such as freezing temperature conditions, normal stresses, relative densities, and water contents.

Centrifuge Test and Its Numerical Modeling for Reliquefaction (재액상화에 관한 원심모형실험과 수치해석)

  • Park, Sung-Sik
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.12
    • /
    • pp.89-98
    • /
    • 2006
  • In this paper the behavior of saturated sand deposits where liquefaction occurred before is studied for successive earthquakes. The relationship between past pore pressure generation and reliquefaction resistance is examined by using cyclic direct simple shear tests. If the soil sample in direct simple shear produced nearly 90% of excess pore pressure during first time loading, its liquefaction resistance increased during following cyclic loading after consolidation. However, a fully liquefied soil during first time loading has a densely packed condition but shows less liquefaction resistance for the following cyclic loading. UBCSAND model that can account for pore pressure change and stiffness loss of soil during shaking is used to analyze the centrifuge test simulating reliquefaction. The pore pressure rise during first time cyclic loading controls liquefaction resistance. The measurements from reliquefaction centrifuge test are compared with numerical predictions. By considering frequent earthquakes having occurred at the Southern Korea near Japan, such effective stress approach is necessary for reliquefaction study.

Constitutive Modeling for Resilient Behavior of Granular Materials under Repeated Loading (반복하중을 받는 입상재료의 회복탄성거동에 관한 구성모델)

  • Rhee, Suk Keun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.4
    • /
    • pp.827-838
    • /
    • 1994
  • Numerous pavement response models rely on constitutive relationships to describe the response of granular materials. In this study, a nonlinear elastic constitutive model which is a function of bulk stress and octahedral shear stress is proposed to describe the resilient behavior of thick granular base courses under flexible airfield pavements. Special features of this model are its accuracy to predict the nonlinear resilient behavior, its simplicity to determine the material constants and its ability to model the secondary effect of decreasing the resilient modulus due to shear effects. In laboratory tests, the nonlinear resilient behavior of granular materials is investigated and values of resilient moduli are determined to provide data for verifying the proposed model. It is found that the resilient modulus is much more dependent on the states of stresses in terms of bulk stress and deviator stress than any other factors. Result of comparison shows that predicted values of resilient moduli are in good agreement with the measured values indicating that the proposed model is suitable to describe the nonlinear resilient behavior of the granular material with wide range of stress states which meet in airfield pavements.

  • PDF

A Possible Test Method Proposed for Resilient Modulus (MR) and Analysis of Correlation between Resilient Modulus and Shear Modulus of Track Subgrade Soil (흙노반재료의 회복탄성계수(MR) 결정을 위한 반복삼축압축시험법 제시 및 변형계수 상관성 분석)

  • Park, Jae Beom;Choi, Chan Yong;Lim, Sang Jin;Lim, Yu Jin
    • Journal of the Korean Society for Railway
    • /
    • v.20 no.1
    • /
    • pp.85-98
    • /
    • 2017
  • In general, under the repetitive dynamic load generated by rail cars running on the track, subgrade soil experiences changes of stress conditions such as deviatoric stress (${\sigma}_d$) and bulk stress (${\theta}$). Due to the repetitive change of deviatoric stress (${\sigma}_d$) with number of loadings, the resilient modulus ($M_R$) can be obtained by using the measured resilient strain (${\varepsilon}_r$) after a sufficient number of loadings. At present, no plausible and unified test method has been proposed to obtain the resilient modulus of railway track subgrade soil. In this study, a possible test method for obtaining the resilient modulus ($M_R$) of railway track subgrade soil is proposed; this test, by utilizing repetitive triaxial compression testing, can consider all the important parameters, such as the confining stress, deviatoric stress, and number of loadings. By adapting and using the proposed test method to obtain $M_R$, $M_R$ values for compacted track subgrade soil can be successfully determined using soil obtained in three field sites of railway track construction with changing water content range from OMC. In addition, shear modulus (G) ~ shear strain (${\gamma}$) relation data were also obtained using a mid-size RC test. A correlation analysis was performed using the obtained G and $M_R$ values while considering the strain levels and modes of strain direction.