• Title/Summary/Keyword: 반복가력실험

Search Result 136, Processing Time 0.026 seconds

Loading Rate Effect on the Lateral Response of H-Shape Steel Column (재하속도가 H-형강 기둥부재의 횡방향 거동에 미치는 영향)

  • Park, Minseok;Kim, Chul-Young;Han, Jongwook;Chae, Yunbyeong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.41 no.6
    • /
    • pp.637-644
    • /
    • 2021
  • Dynamic response of structures can be evaluated experimentally by conducting cyclic loading tests. It has been known that steel materials are rate-dependent and the lateral response of a structure is significantly affected by the presence of axial force. However, the rate-dependency of steel column structures subjected to both axial and lateral loads has not been sufficiently studied yet due to the difficulty of controlling the axial force in a real-time manner during test. This study introduces an advanced way to apply the axial load in real-time to a column specimen using the adaptive time series (ATS) compensator and the flexible loading beam (FLB), where the H-shape steel columns made of SS275 are used for monotonic and cyclic loading tests with various loading rates with axial loads. The lateral strength and post-yield response of the steel columns are compared for each of monotonic and cyclic loading tests. The estimating equation of yield stress of various strain rate has proposed and finite element analysis were performed for comparison.

Test of RC Structures with Friction Damper (마찰형 댐퍼가 있는 RC 구조물에 관한 실험적 연구)

  • Kim, Young Ju;Ahn, Tae Sang;Lee, Chang Hwan;Kim, Sang Dae
    • 한국방재학회:학술대회논문집
    • /
    • 2011.02a
    • /
    • pp.30-30
    • /
    • 2011
  • 국내의 내진설계 기준은 1988년에 처음 도입되었으며, 최근 점차 강화되고 있는 실정이다. 공동주택에 주로 적용되는 전단벽식 구조시스템에서 증가된 지진력에 저항하기 위해서는 벽량과 철근이 증가하게 되어 공사비가 상승하게 된다. 이러한 단점을 보완하기 위한 제진설계의 필요성이 대두되고 있는 실정인데, 기존의 제진장치는 주로 가새형 또는 벽체형을 대부분이라 평면계획에 제약이 있다. 따라서 전단벽식 구조의 공동주택의 제진설계 시에는 우리나라와 같은 중 약진 지역에 적합하고 저렴한 비용으로 충분한 내진성능과 평면의 가변성을 확보할 수 있는 댐퍼의 선택이 필요하다. 본 연구의 목적은 기존의 가새형 및 벽체형 제진장치의 국내 공동주택 적용시의 문제점인 평면의 가변성 확보에 유리하고, 수동형 제진장치의 장점을 추구할 수 있는 마찰댐퍼를 삽입한 커플링보 제진시스템의 내진성능을 조사하는 것이다. 내진성능을 평가하기 위해서 실대형 커플링보 실험체를 계획하고 제작하였다. 실험체는 2개로 구성되어 있으며, 하나는 기존의 철근배근 상세를 갖는 철근콘크리트 커플링보 실험체와 커플링보에 마찰댐퍼가 삽입된 실험체이다. 횡하중에 대한 성능을 평가하기 위해서 유사정적 반복가력실험을 실시하였다. 엑츄에이터로부터 실험체 상보의 가력지그를 통해 하중이 전달되도록 하였으며, 가력은 최초 0.25%의 층간변형각부터 변위제어를 통해 목표 층간변형각인 1.5% 이상까지 진행되도록 하였다. 실험결과, 두 실험체의 이력곡선과 에너지 흡수능력을 평가하였다. RC 실험체는 핀칭현상이 관찰되었고, 가력이 진행됨에 따라 커플링보와 벽체에서의 균열이 확산되어 종국적으로 취성적인 커플링보의 전단파괴가 발생하였다. 마찰댐퍼를 삽입한 실험체는 계획된 마찰거동이 잘 발휘되어 목표 층간변형각인 1.5%까지 이선형거동이 잘 나타났다. 최대 내력은 RC 실험체가 3배 이상 크지만, 누적층간변형각에 따른 에너지 흡수능력은 마찰댐퍼 실험체가 2배 이상 우수한 결과를 보였으며, 커플링보 및 벽체에서의 균열이 매우 저감되었다.

  • PDF

Evaluations of Shear performance and Compressive strength of Light-weight hybrid panel (경량합성벽체의 전단성능 및 압축내력 평가)

  • Lee, Dong Hyuck;Lee, Sang Sup;Bae, Kyu Woong;Moon, Tae Sup
    • Journal of Korean Society of Steel Construction
    • /
    • v.17 no.1 s.74
    • /
    • pp.33-43
    • /
    • 2005
  • This paper presents the test results and evaluations for the energy dissipation capacity and compressive performance of light-weight hybrid panels. A total of 26 full-scale specimens of light-weight hybrid panels were tested. The parameters include the presence of light-weight foamed mortar, the specific gravity of light-weight foamed mortar (0.6, 0.8, 1.0, 1.2), the finishing materials (light-weight foamed mortar, OSB [Oriented Strand Board], gypsum board), the shape of bracing (x, ~), and the size of panels (1P-900 mm 2,400 mm, 2P-1,800 mm 2,400 mm). The results of the cyclic tests are somewhat different from those of monotonic tests, due to the different specific gravity of light-weight foamed mortar. It was found from the compressive tests that the ultimate strength and initial stiffness are increased by means of light-weight foamed mortar (2~2.5 times in ultimate strength and 2~3 times in initial stiffness).

Cyclic Test of Shear Wall Damping Systems (전단벽 제진시스템의 반복가력실험)

  • Ahn, Tae Sang;Kim, Young Ju;Kim, Hyung Geun;Jang, Dong Woon;Choi, Kyoung Kyu;Kim, Jong Rak
    • Journal of Korean Society of Steel Construction
    • /
    • v.25 no.1
    • /
    • pp.81-92
    • /
    • 2013
  • The objective of conventional seismic design is to ensure an acceptable safety level while avoiding catastrophic failures of structures and loss of life. Over the last many years, a large amount of research has been devoted into developing effective earthquake resistant systems in order to raise the seismic performance level of structures. The purpose of this study is to propose a new damping system, which realize not only increasing seismic performance but also easy repairing after an earthquake. The proposed damping system is slit in the bottom of wall with damping devices installed in the slit horizontally aiming to dissipate energy during earthquakes. Cyclic loading tests were conducted to investigate hysteretic behavior and energy dissipation capacity. Test results show that the proposed systems exhibit a stable hysteretic response and the energy dissipation in this system is concentrated on the damping devices.

Hysteretic Behavior Evaluation of Reinforced Concrete Columns Retrofitted with Iron-based Shape Memory Alloy Strips (철계 형상기억합금 스트립으로 보강된 콘크리트 기둥의 반복이력거동 평가)

  • Jeong, Saebyeok;Jung, Donghyuk
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.35 no.5
    • /
    • pp.287-297
    • /
    • 2022
  • This paper presents experimental and analytical studies on the lateral cyclic behavior of RC columns actively confined with iron-based shape memory alloy (Fe-SMA) strips. Based on the Anexperimental study, we investigated the effectiveness of active confinement through compression testings of concrete cylinders confined by Fe SMA strips and carbon fiber-reinforced polymer (CFRP) sheets. The test results showed that the specimens confined with Fe SMA strips significantly increased the deformation capacity of the concrete, even under lower confining pressures, compared to those specimensconfined with CFRP sheets. The experimental results were used to develop finite-element models of RC columns confined with Fe SMA or CFRP in their plastic-hinge region. After validating the proposed analytical model through comparison with the results from a previous RC column test, a series of lateral cyclic load analyses were carried out for the RC columns confined with Fe SMA and CFRP. The analytical results revealed that the lateral cyclic behavior of the Fe SMA-confined column was greatly enhanced in terms of deformation and energy dissipation capacities compared with tothat of the as-built and CFRP-confined columns.

Cyclic Loading Test on Connection of SRC Column-Composite Beam Consisting of H-Section and U-Section Members (SRC기둥-H형단면과 U형단면으로 구성된 합성보 접합부의 반복가력실험)

  • Kim, Young Ju;Bae, Jae Hoon;Ahn, Tae Sang;Kim, Jin Won;Ryu, Hong Sik
    • Journal of Korean Society of Steel Construction
    • /
    • v.26 no.4
    • /
    • pp.263-275
    • /
    • 2014
  • In this study, connection of steel reinforced concrete(SRC) column and composite beam which consists of H-section and U-section members were tested under cyclic loading. An essential point of the composite beam is the structural performance of welded joint between the H-section and the U-section members. To improve the structural performance of joint of two beam members, vertical stiffeners, trapezoidal stiffeners, and top bars were used. Five full-scaled specimens were designed to study the effect of a number of parameters on cyclic performance of connections such as H-section beam size($H-500{\times}200{\times}10{\times}16$, $H-600{\times}200{\times}11{\times}17$), the presence of stiffeners and top bars, and the presence of no weld access hole(WAH) method. Based on the test results, deformation capacity of the specimens with H-500 series beam and H-600 series beam were 4% and 3% rotation angle, which is the requirement for the Special Moment Frame and Intermediate Moment Frame(IMF), respectively. Test result showed that deformation capacity of connection with stiffeners and top bars is greater than that of connection without stiffeners and top bars. Finally, energy dissipation capacity and strain profile of specimens were summarized.

Experimental Evaluation for Structural Performance of Diagrid BRB Structural System (Diagrid BRB의 실험적 구조성능 평가)

  • Lee, Jong-Hyock;Ju, Young-Kyu;Kim, Young-Ju;Kim, Sang-Dae
    • Journal of Korean Society of Steel Construction
    • /
    • v.22 no.3
    • /
    • pp.261-269
    • /
    • 2010
  • It is now possible to design buildings in various forms using a diagrid structural system, which is the one of the most useful structural systems. It is difficult to design and construct the connections, however, and the bucklings in braces weaken the seismic performance of structures. In this study, the initial stiffness, ductility, and energy-dissipated capacity of a diagrid and a diagrid BRB were evaluated via frame tests. The results of the cycling load tests showed that the diagrid BRB had better initial stiffness and ductility, and dissipated extra energy after the BRBs were yielded.

Beam Tests for Static and Fatigue Interface Shear Strength between Old and Njew Concretes (신구콘크리트 계면의 전단강도 측정을 위한 정하중 및 피로하중 보실험)

  • 최동욱
    • Magazine of the Korea Concrete Institute
    • /
    • v.9 no.3
    • /
    • pp.137-147
    • /
    • 1997
  • Interface shear strength of' concrete under static loading and deterioratiion of interface strength by fatigue loading in shear were experimentally investigated using composite beam test specimens. Thirteen beams were constructed. Five composite beams were tested statically until interface delaminations were observed in the static tests. Seven composite beam and one monolithically cast beam were subjected to two to three million cycles of fatigue load. Test variables were interface roughness, interface shear reinforcement, and presence of interface bond. The average interface shear strength of the composite beams with bonded-rough interface was 6, 060 kPa. No interface delamination was observed after cycling for the composite beams with bonded - rough interface and interface bond was not influenced by repeated application of the shear stress of 2.000 kPa(about 1/3 of the static interface shear strength). Smooth interface and unbonded-rough interface with shear reinforcement deteriorated under repeated shear loading.

Experimental Study on Two-Seam Cold Formed Square CFT Column to Beam Connections with Asymmetric Diaphragms (상하 이형 다이아프램으로 보강된 2심 냉간성형 각형 CFT 기둥-보 접합부의 실험적 연구)

  • Oh, Heon Keun;Kim, Sun Hee;Choi, Sung Mo
    • Journal of Korean Society of Steel Construction
    • /
    • v.25 no.1
    • /
    • pp.35-45
    • /
    • 2013
  • The concrete-filled tube column has the excellent structural performance. But it is difficult to connect with column and beam because of closed section. It suggests that pipe should be produced by welding two sides together where two shapes are joined after a channel is pre-welded onto the three sides in order to form an internal diaphragm. The upper diaphragm of the connection used the horizontal plate and the lower diaphragm used the Vertical plate. This research performed 6 monotonic tension experiments describing the connection upside and downside in order to evaluate the structural capability of the offered connection. And the cyclic loading experiment was performed about 2 T-Type column to beam connections. As to the experimental result edge cutting geometry, there was no big effect. An increase in the number of holes of the plate ultimate strength was increased by 5% and The thickness of the plate increases, the maximum strength was increased by 4%. T-Type connections until it reaches the plastic moment showed a stable behavior.

A Study on the Shear Characteristic of├ Type Reinforced Concrete Joints under Cyclic Loading (반복하중을 받는 ├형 철근콘크리트 접합부의 전단특성에 관한 연구)

  • 이상호;이동화
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.5 no.2
    • /
    • pp.73-82
    • /
    • 2001
  • 본 연구는 실험적 방법과 해석적 방법을 통하여 반복하중을 받는 ├형 철근콘크리트 접합부의 전단특성을 파악함을 목적으로 한다. ├형 접합부는 고강도 재료의 사용으로 인한 체적의 감소 뿐만 아니라, 지진발생 시 반복하중의 작용으로 인한 변동축력 등으로 , 구조적으로 취약한 부분이 될 가능성이 있다. 따라서 본 연구에서는 ├형 접합부의 전단특성을 파악하기 위하여 기동축력, 콘크리트 압축강도, 접합부 전단보강근비를 변수로 한 12개의 실험체를 제작하여 가력실험을 수행하였다. 또한, 유한요소 해석을 수행하여 본 실험결과와의 비교 검토를 통하여 타당성을 검토한 후, 기둥축력과 콘크리트 압축강도의 변화에 대한 변수해석을 통하여 접합부의 전단강도에 미치는 변수는 영향을 파악하였으며, 실험에 의한 실험체의 전단내력을 기존에 제안된 AIJ, ACI 규준 등과 비교 검토하였다. 본 연구의 결로부터 기둥축력과 콘크리트 압축강도가 ├형 철근콘크리트 접합부의 전단강도에 미치는 영향을 확인하였다.

  • PDF