• Title/Summary/Keyword: 반류모델

Search Result 8, Processing Time 0.021 seconds

Measurement of three-dimensional interfacial wave structures in nearly- horizontal countercurrent statified two-phase flow (근사수평 반류성층 2상유동에서의 3차원 계면파의 구조측정)

  • 이상천
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.3
    • /
    • pp.599-606
    • /
    • 1988
  • Structures of interfacial waves in nearly-horizontal countercurrent stratified air-water flow have been measured by means of a needle contact method. Based upon a statistical analysis for the liquid film distribution, statistical properties of the waves such as mean film thickness, mean wave amplitude and rms value of the wave fluctuation have been calculated. The results show that the film distribution can be described by a Gaussian probability density function for the three-dimensional wave regime. It is also indicated that the mean film thick ness and the rms value of the wave fluctuation increase as gas and liquid flow rates are increased in countercurrent two-phase flow. The dimensionless intensity of the wave fluctuation may be regarded as a function of the Froude number and the dimensionless mean film thickness.

제주형 해중림 조성모델 개발시험

  • 홍성완;김판석;고형범;강봉조;김보영
    • Proceedings of the Korean Society of Fisheries Technology Conference
    • /
    • 2001.10a
    • /
    • pp.85-86
    • /
    • 2001
  • 해중림(kelp forest)은 천해역의 대형 해조류에 의한 군락을 가르키는 용어로 해조장, 해조숲, 해조밭 등으로도 불리어지고 있다. 해중림 구성종인 대형 갈조류의 모자반류, 다시마류 및 대황ㆍ감태류는 조하대 수심 2∼3m에서 20m정도의 암초대에 큰 군락을 형성하여 번무하는 경향이 많다. 이 처럼 대형식물이 밀생한 해중림에는 어류가 모여 산란장 및 유치어의 보육장이 되고 있고, 전복, 소라 등의 패류자원에 먹이를 제공함은 물론 연안 수질환경 개선에도 일익을 담당하고 있다(횡빈, 1985). (중략)

  • PDF

Structure and Dynamics of the Cold Water in the Western Channel of the Korea Strait (대한해협 서수도 냉수의 구조와 역학)

  • Cho, Yang-Ki;Kim, Kuh;Kim, Young-Gyu
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.9 no.3
    • /
    • pp.132-139
    • /
    • 1997
  • CTD and current observation were taken to investigate the structure of the cold water in the Western Channel of the Korea Strait in October 1993. Thickness of the cold water in the deep trough of the strait changes from 20 m to 70 m according to the water depth. Thermocline between the Tsushima Warm Water and the cold water deepens from north to south with 0.00057 in slope. Temporal variation of the thickness appears to be related with the tidal current. The maximum variation is 20 m for 48 hours. Mean velocity of the cold water for 72 hours is 17 cm/sec southward. A simple model was used to understand dynamically the southward flow of the cold water and the return flow at the upper part in the lower layer. Calculated maximum southward flow and eddy viscosity coefficient are 7 cm/sec and 0.038 $m^2$/sec respectively in the model. Southward transport is $0.032$\times$10^6㎥/sec$ at the northern part in the trough and decreases from north to south due to the presence of the return flow. Southward transport increases with the increase in the upper layer transport but is not affected by the density of the upper layer or the interface slope.

  • PDF

A Numerical and Experimental Procedure for the Open Water Characteristics of Contra-Rotating Propellers for EEDI Improvement (EEDI 개선을 위한 상반 회전 프로펠러 단독성능 분석용 수치해석과 모형시험에 대한 연구)

  • Kim, Moon Chan;Song, Mu Seok;Kang, Hyeon Ji;Kim, Dong Eon
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.16 no.4
    • /
    • pp.248-254
    • /
    • 2013
  • Recently, contra-rotating propellers (CRP) having higher efficiency draw much attention since the EEDI regulation of IMO has been enforced. In this paper a numerical method based on the vortex lattice potential theory with a wake model and an experimental procedure with a newly built measuring device, specifically focusing on CRPs, are introduced. And they are applied to a series of CRP known to be designed for the purpose of improving EEDI. The numerical and experimental results showed good agreement explaining the characteristics of the CRP properly. The proposed method is believed to be effectively used for various CRP related studies.

Numerical Prediction of Ship Hydrodynamic Performances using Explicit Algebraic Reynolds Stress Turbulence Model (선박의 저항성능 추정을 위한 EARSM 난류 모형의 활용)

  • Kim, Yoo-Chul;Kim, Kwang-Soo;Kim, Jin
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.51 no.1
    • /
    • pp.67-77
    • /
    • 2014
  • In this study, Explicit Algebraic Reynolds Stress Model (EARSM) which is based on the existing ${\kappa}-{\omega}$ model has been applied to the flow field analysis around ship hulls. Existing transport equations for the turbulent kinetic energy and the dissipation rate are used in almost the same form and anisotropy terms of Reynolds stresses are newly considered. The well-known KVLCC2 and KCS hull forms are selected as validation cases, which were also used in 2010 Workshop on CFD in Ship Hydrodynamics. In case of KVLCC2 double model, comparison of mean velocity distribution, turbulent kinetic energy, and Reynolds stresses near the propeller plane has been carried out and wave elevation and wave profiles have been additionally studied for KCS and KVLCC2 with free surface models. Some improved results for mean velocity distribution at the propeller plane have been obtained while there is little change in free surface wave profiles.

Numerical Simulation of the Flow Around the SUBOFF Submarine Model Using a DES Method (DES법을 이용한 SUBOFF 잠수함 모델 주위 유동 수치해석 연구)

  • Suh, Sung-Bu;Park, Il-Ryong
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.58 no.2
    • /
    • pp.73-83
    • /
    • 2021
  • In this study, the numerical investigation of the flow around the SUBOFF submarine model is performed by using the Detached Eddy Simulation (DES) method which is developed based on the SST k-ω turbulence model. At the DES analysis level, complex vortical flows around the submarine model are caused mainly by the vortices due to the appendages and their interactions with the flows from the hull boundary layer and other appendages. The complexity and scale of the vortical flow obtained from the numerical simulations are highly dependent on the grid. The computed local flow properties of the submarine model are compared with the available experimental data showing a good agreement. The DES analysis more reasonably estimates the physical phenomena inherent in the experimental result in a low radius of the propeller plane where vortical flows smaller than the RANS scale are dominant.

A Numerical Modeling of the East sea circulation (동해 순환의 수치모델)

  • Seung, Young-Ho;Kim, Kyun
    • 한국해양학회지
    • /
    • v.28 no.4
    • /
    • pp.292-304
    • /
    • 1993
  • The east Sea circulation is numerically modeled with refined grid resolution elaborated open boundary condition, and by directly imposing the measured surface temperature and salinity typical the east Korean Warm current are clearer than those in previous works. among others, The Ulleung warm Water and the Intermediate Water of minimum salinity are nicely reproduced. The latter is formed in the northern/northwestern coastal region in winter and is advocated southward by strong under-current. the former is associated with a locally generated anti-cyclonic gyres. The model indicates strong seasonal variation of Nearshore Current along the Japanese coast from wintertime barotropic to summertime baroclinic structures. the associated strong reversed under-cur-rent in summer is not well understood. Global circulation pattern is characterized by two regions of cyclonic and anti-cyclonic gyres in the north and south, respectively. The presence of these gyres indicates importance of local dynamics in East Sea circulation. This model, however, does not completely resolve the problem of overshooting of the East Korean Warm current.

  • PDF

An Experimental Study on the Characteristics of Propeller and Rudder in Oblique Towing Conditions (사항상태(斜航狀態)에서 프로펠러와 타(舵)의 특성(特性)에 관한 실험적 연구)

  • S.K. Lee;H.S. Kim;S.J. Kim;M.J. Song;S.H. Kim
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.31 no.4
    • /
    • pp.66-72
    • /
    • 1994
  • For the reliable prediction of maneuverability of a ship, lots of captive model tests have been carried out for over 10 years. But the parameters appearing in the mathematical model are so versatile and showing complex characteristics, and it is still hard to establish the useful formulae that we can adopt directly in the design stage. In this paper, the most important parameters in the mathematical model. i.e.($1-\omega_P$) the effective wake fraction at propeller, and $\delta_R(\beta_R)$), the effective rudder inflow angles are investigated by the captive model tests at the circulating water channel. The model is tested at designed speed and at low speed, and the drafts at both full load and ballast load conditions are taken. Propeller thrusts and rudder normal forces are measured at the given drift angle and propeller revolution. These forces are used for the analysis of the effective flow velocity or flow direction, to the propeller or rudder.

  • PDF