• Title/Summary/Keyword: 반력제어

Search Result 37, Processing Time 0.025 seconds

Analysis on Reactions of Full-Scale Airframe Static Structural Test (항공기 전기체 정적구조시험의 반력 분석)

  • Shim, Jae-yeul
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.3
    • /
    • pp.195-205
    • /
    • 2020
  • This study addresses analysis on reactions which are induced in restraint system for airframe full-scale static structural test. This system restraints 6 degrees of freedom of a test article. It is valuable to study evaluating test error through analysis on the reactions which include all errors in a test. It is required to calculate fistly right reactions for the evaluation. This study focuses on calculation of the right reactions. The reaction is represented by sum of nominal reaction(Rn) and testing error reactions(Rce, Rerr) and is analyzed by two steps (inital vs relative reaction) in this study. It would evaluate intrinsic error at 0%DLL and error induced from applying test load, separately. Based on analysis using test data of a full-scale static test(canard type aircraft), resultant force of Rces and Rce_rs are distributed within 82.8N while resultant force of Rerr_rs shows to increase upto max. 808N as load level increment. Such well distribution of the Rce within the small range is caused from TMF values characteristics which are well distributed within -30N~40N. Additionally, it is shown through qualitative analysis on three components(X0, Y0, Z0) of the relative reaction(Rerr_r) that the reactions must be calculated with considering deformation of test article to calculate correctly reactions. This study shows also that equations characterizing deformation of components of test article are required to calculate the correct reactions, the equations must include information which will be used to calculate movement of all loading points.

Design and Performance Validation of Tactile Force Generating Type Eco-pedal to Improve Fuel Economy (연비 향상을 위한 반력 생성형 에코페달의 설계와 성능검증)

  • Kim, Ji Soo;Tak, Tae Oh
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.11
    • /
    • pp.963-970
    • /
    • 2016
  • This research deals with design and performance validation of eco-pedals that generate tactile pedal force to guide fuel saving driving behavior. For eco-pedal control logic, allowable fuel consumption at given driving speed is calculated based on pre-defined "allowable acceleration", and if the actual fuel consumption exceeds the allowable fuel consumption, then pedal force is activated. Pedal force should be recognizable to driver while not causing unpleasantness, and should not interfere with normal operation of pedal. Reaction forces that increase pedal stiffness abruptly, such as step and ramp shape, turn out to be not suitable due to pedal overshoot after release of reaction force. With this regards, vibration type reaction force is adopted, and its optimal frequency, magnitude and duration is determined through subjective evaluation with consideration to effect to fuel efficiency. Though highway and city driving test, it is demonstrated that fuel efficiency increase of 13% for highway and 15% for city is achieved.

Vibration Control of a Single-Link Flexible Manipulator Using Reaction Moment Estimator (반력모멘트 추정기를 이용한 단일 링크 유연 조작기의 진동제어)

  • Shin, Hocheol;Han, Sangsoo;Kim, Seungho
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.2 s.95
    • /
    • pp.169-175
    • /
    • 2005
  • In this paper, a novel vibration control scheme for a single-link flexible manipulator system without using a vibration feedback sensor is proposed. In order to achieve the vibration information of the flexible link, a reaction moment estimator based on the dynamic characteristics of the flexible manipulator is proposed. While the manipulator is maneuvering the reaction moment is reciprocally acting on the flexible link and the hub inertia due to the vibration of the link. A sliding mode controller based on the equivalent rigid body dynamics corresponding to the proposed flexible manipulator is then augmented with the reaction moment estimator to realize a decentralized control system. The reaction moment estimator is implemented via the first order low pass filter. The performance of the proposed control scheme is verified by computer simulation and experiment.

The Development of a Flexible and Sensible Robot Wrist for Aseembly Process (유연하고 감지성있는 조립전용 로봇 손목 의 개발 에 대한 연구)

  • 조형석;고경철
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.8 no.5
    • /
    • pp.488-497
    • /
    • 1984
  • In the assembling process by industrial robots, many difficulties stem from the fact that the assembly operation is impossible or the parts to be assembled can be damaged by reaction forces due to even little misalignment in part mating. In this paper a flexible and sensible robot wrist is developed to make possible the precision insertion operation. The flexibility of the developed wrist were evaluated both analytically and experimentally in actual insertion process. The results show that without the use of feedback control the wrist is capable of doing insertion operations with a small clearance at a low inserting force. For smaller clearance the assembly process was devised involving insertion force feedback and a control algorithm for this active accommodation was developed. The simulation results show that if the active feedback control is used the insertion action can be performed with much less force, as compared with a passive accommodation method.

5자유도 순응기구

  • 정경한;최용제
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.10a
    • /
    • pp.90-90
    • /
    • 2003
  • PDF

Wave control fuction and friction damping of a pile-supported floating body (말뚝계류식 부유체의 파랑제어 기능과 마찰감에 관한 연구)

  • 김헌태
    • Journal of Ocean Engineering and Technology
    • /
    • v.11 no.1
    • /
    • pp.65-73
    • /
    • 1997
  • The floating body discussed in this study is a 2-D rectangular floating unit supported by four vertical piles at its corners. Structures of this type are frequently seen as floating piers for the crafts in a small harbour. The movement in some modes of motion of such a flating body is fully or partially restrincted by the piles. The authors(Kim et al. 1994) carried out a series of model tests on its wave control function, its motion and the loads on piles. The experimental results showed that a certain degree of intial constriction force which clamps the floating unit in the horizontal direction can effectively reduce the body motion and wave energy without increasing mooring forces. This may be due to the friction forces occuring between the piles and the rollers installed in the mooring equipments on the floating unit. In this paper, we develop a numerical model for the prediction of wave transformation and floating body motions, where the friction force is idealized as the Coulomb friction and linearized into a damping force using the equivalent damping cofficient. This linearization is verified by comparing the results of motions between the linear and nonlinear analysis of the ezuations of motion. We further compare the caculation results by the linear model with the experimental results and discuss the effect of the friction force or the constriction force on body motions and wave energy dissipation.

  • PDF

KC-100 Full-scale Airframe Static Test (KC-100 전기체 정적 구조시험)

  • Shim, Jae-Yeul;Jung, Keunwan;Lee, Hanyong;Lee, Sang Keun;Hwang, Gui-Chul;Ahn, Seokmin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.1
    • /
    • pp.67-75
    • /
    • 2014
  • A full-scale static test for a composite structure small aircraft (KC-100) was conducted in the KARI. The test includes 15 full-scale test and 7 local test conditions. Test requirements with test schedule, test article with dummy structures, test load generation, test system, and equipment are introduced for the test. Test load data of the 1st test condition(U1) was analyzed to evaluate an accuracy of load control for the test. The analysis results show that load data obtained during test were within tolerance of Static Null Pacing Error(SNPE) and the error value of load control was 8.6N. The error of load controls for the full-scale static test using dozens of actuators was calculated by a method suggested by authors. Test data for all other test conditions is also shown in this paper. Finally, reactions measured from restraint system of the U1 test condition show that the reaction changes as load increment. The factors which may change the change of reactions for a full-scale static test are introduced in this study.

Upper-Stage Launch Vehicle Servo Controller Design Considering Optimal Thruster Configuration (상단 발사체 추력기 최적 배치 연구)

  • Hwang,Tae-Won;Tak,Min-Je;Bang,Hyo-Chung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.9
    • /
    • pp.55-63
    • /
    • 2003
  • An attitude control system using reaction thrusters for the upper stage of a launch vehicle is considered. The thruster configuration (position and direction) determines control system response, fuel consumption, effective torque and system fault tolerance. We propose a procedure for finding the optimal thruster configuration with desired control effectiveness over the range of selected torque commands. An optimization technique called Particle Swarm Optimization is used for the numerical experiments. The validity of the solution is checked through computer simulations.

Physically-based Haptic Rendering of a Deformable Object Using Two Dimensional Visual Information for Teleoperation (원격조작을 위한 이차원 영상정보를 이용한 변형체의 물리적 모델 기반 햅틱 렌더링)

  • Kim, Jung-Sik;Kim, Jung
    • 한국HCI학회:학술대회논문집
    • /
    • 2008.02c
    • /
    • pp.19-24
    • /
    • 2008
  • This paper presents a physically-based haptic rendering algorithm for a deformable object based on visual information about the intervention between a tool and a real object in a remote place. The physically-based model of a deformable object is created from the mechanical properties of the object and the captured image obtained with a CCD camera. When a slave system exerts manipulation tasks on a deformable object, the reaction force for haptic rendering is computed using boundary element method. Snakes algorithm is used to obtain the geometry information of a deformable object. The proposed haptic rendering algorithm can provide haptic feedback to a user without using a force transducer in a teleoperation system.

  • PDF