본 논문에서는 나노 스케일 확산 공정 모사를 위한 방법으로 동력학적 몬테칼로(kinetic Monte Carlo)를 소개하고자 한다. 먼저 동력학적 몬테칼로의 이론과 배경을 살펴보고 실제적인 이해를 돕기 위하여 실리콘 기판에 이온(전자) 주입 후 열처리과정에서 일어나는 점결함의 확산을 동력학적 몬테칼로를 이용하여 모사하는 간단한 예를 보여주고 있다. 동력학적 몬테칼로는 몬테칼로의 일종이지만 기존의 몬테칼로에서 구현하지 못하였던 물리적인 시간을 포아송 확률 과정을 통하여 구현하였다. 동력학적 몬테칼로 확산 공정 모사에서는 연속 확산 미분 방정식의 해를 구하는 기존의 유한 요소 수치 해석적 방법과 달리원자 상호간 혹은 원자와 결함 또는 결함들 간의 화학적 반응과 입자들의 확산 과정을 포아송 확률 과정에 따라 일어나는 화학적 반응, 입자들의 확산 사건의 연속으로 본다. 사건마다 고유의 사건 발생 확률을 갖고 이 사건 발생 확률에 따라 일어나는 확률적 사건의 연속적 발생으로 실제의 반도체 확산 공정을 시간에 따라 직접적으로 모사할 수 있다. 입자들 간의 화학적 반응 사건 확률과 입자들의 확산 공정에 필요한 확률적 인자들은 분자 동역학, 양자 역학적 계산, 흑은 실험으로 얻어진다.
양자점은 수 나노미터 크기의 반도체 나노입자로 우수한 발광 특성 및 색순도, 간단한 밴드갭 조절의 장점 때문에 이를 발광원으로 사용한 양자점 디스플레이가 차세대 디스플레이로 주목받고 있다. 하지만 전하 주입 불균형 문제로 인해서 소자의 효율 및 안정성에 큰 문제가 발생하고 이를 해결하기 위한 많은 연구가 진행되었다. 본 논문에서는 전자 및 정공 수송층에 중간층을 삽입하여 양자점 디스플레이의 발광과 수명 특성을 향상시킨 연구와 정공 수송층의 구조 변화를 통해서 정공 수송 능력을 향상시킨 연구들에 대해서 소개하고자 한다.
반도체 기반 양자점 (QD)소재와 CsPbX3 (X=Cl, Br, I)기반 perovskite 양자점 또는 나노결정 소재(PNC)는 매우 우수한 양자효율과 좁은 발광 선폭으로 고색재현성 디스플레이 색변환 소재 또는 발광 소재로서 각광을 받고 있다. 그러나, 기존 화학적 합성법을 통해 제조되는 QD 및 PNC 소재는 취약한 열 및 화학적 안정성으로 인해 장기 내구성의 개선이 요구된다. 이들 QD 및 PNC 소재는 모두 완전 무기 소재인 산화물 기반 유리 소재내에 생성이 가능하며, 이를 통해 장기 내구성을 근본적으로 개선할 수 있다. 반도체 기반 QD 함유 유리소재 (QDEG)의 경우, 유리 내 core/shell 구조를 가진 QD의 생성으로 양자효율의 향상이 가능했으나, 콜로이드 기반 양자점 (cQD)과 달리 다중 shell의 형성이 어려워 양자효율이 제한되고, 발광 선폭이 넓어 고색재현성 디스플레이용 색변환 소재로 적용되기에는 아직 한계가 있다. 한편, Perovskite 양자점 (또는 나노결정) 함유 유리소재 (PNEG) 소재는 QDEG과 달리 콜로이드 기반의 PNC (c-PNC)가 가지는 우수한 양자효율과 20 nm 수준의 좁은 선폭을 유리 내에서도 가지며, c-PNC 대비 열적, 화학적 및 광학적 안정성이 획기적으로 향상되어 실질적인 응용 가능성을 높이고 있다. 특히, 일반적인 용융-급랭법으로 제조하여 대량생산에 용이하고, 분말 또는 판상 등 다양한 형태로의 제작이 가능한 장점이 있다. 현재까지 제조된 PNEG의 최대 PL-QY는 450 nm 여기 시 녹색 및 적색에서 약 60% 수준이며, Al2O3 분말을 이용할 경우 최대 80% 수준까지 달성이 가능하다. 또한, PNEG과 blue LED를 이용하여 백색 LED를 구현할 경우 color filter를 적용하지 않을 때, NTSC 대비 최대 약 130 % 수준의 높은 색재현 영역을 보여 주고 있으며, 실제 LCD용 BLU로 적용 시 기존 상용 c-QD 소재와 동등 이상의 색재현 영역을 보이고 있어, 실질적인 응용 가능성이 매우 높음을 확인하였다. PNEG의 상업적인 응용을 위해서는 몇 가지 추가적인 연구 개발이 필요하다. 기존 c-QD 또는 c-PNC는 나노 수준 크기의 입자가 액상에 분산된 형태로 입도 제어가 용이하나, PNEG의 경우 분말 제조 시 유리 형성 후 분쇄를 통해 제조되며, 입도가 대개 수십 ㎛ 이하로 작아질 경우 PL-QY가 저하되어, 향후 잉크젯 공정 응용을 위해서는 고효율의 분말 제조공정 개발이 필요하다. 또한, 유리 소재의 경우 절연체로서 기존 QD 소재 대비 electro-luminescence(EL) 소자의 활성층으로 사용하는데 제약이 있어 PNEG을 이용한 EL 소자 제작에 대한 연구도 필요하다. 마지막으로, 기존 c-PNC 소재와 같이 Pb가 함유되지 않은 PNEG 소재의 개발이 선결되어야 할 것으로 판단된다. 이와 같은 해결 과제들에도 불구하고, PNEG 소재는 기존 c-QD 소재 대비 매우 우수한 안정성을 기반으로 고품위 고색재현 디스플레이용 색변환 소재로서 다양한 응용에 활용될 수 있을 것으로 기대된다.
다양한 전자부품에 활용되는 금속 잉크 기술은 전자부품산업의 주요 기술로 자리매김하였으며 이에 대한 연구 개발이 점차 증가하고 있다. 그 중에서 실버 잉크는 뛰어난 전도성과 안정성을 가지고 있어서 전자부품산업에 오랫동안 이용되어 왔으며 최근에는 입자 크기를 나노 크기로 분산시킨 실버 나노 잉크를 개발하여 디스플레이, 전자태그, 반도체와 연성회로 기판 등에 사용되는 전자소재로써 각광받고 있다. 그러나 이러한 전자산업기기의 첨단화는 제품의 생산량과 소비량을 증가시켜 제조 공정 중에 발생되는 환경오염 물질과 사용하고 버려지는 제품들에 의해 심각한 환경 문제를 가져올 것으로 예상된다. 따라서 본 연구에서는 습식환원법에 의해 제조된 실버나노 잉크의 제조 공정이 환경에 미치는 영향을 전과정평가(life cycle assessment, LCA) 기법을 이용하여 평가하였다. 전과정 평가 소프트웨어로는 GaBi 6를 사용하였고, 유관기관으로부터 받은 실버 나노 잉크의 제조 공정 데이터를 참고하여, 인벤토리를 구축하였으며 전과정목록분석(international organization for standardization, ISO) 14040, 14044 규격의 4단계에 걸쳐 LCA를 수행하였다.
최근 나노 박막은 MEMS/NEMS, 광학 코팅, 반도체 산업 등 다양한 분야에서 사용이 되고 있다. 박막은 마모, 침식, 부식, 고온 산화를 방지하기 위한 목적으로 사용될 뿐 아니라 특성화된 자기, 유전적 특성을 만들기 위한 목적으로 사용된다. 많은 연구자들이 이러한 박막 구조의 특성(밀도, 입자 크기, 탄성 특성, 필름/기지 계면의 특성)을 평가하기 위하여 많은 연구를 진행하고 있다. 이들 중에 박막과 기지 사이의 접합 특성을 평가하는 것이 많은 연구자들의 주 관심사가 되어 왔다. 본 연구에서는 나노 박막의 접합 특성을 평가하기 위하여 각기 다른 접합 특성을 가지는 폴리머 박막 시험편을 제작하였다. 제작된 시험편의 접합 특성을 측정하기 위하여 초음파현미경의 V(z) 곡선법을 이용하여 표면파의 속도를 측정하였다. 또한 계면을 포함하는 시험편의 표면을 전파하는 표면파의 속도와 접합력의 상관관계를 확인하기 위해 나노 스크래치 시험을 적용하였다. 그 결과 초음파현미경을 이용하여 측정된 표면파의 속도와 나노스크래치 시험을 이용한 임계하중이 일치하는 경향성을 나타내었다. 결론적으로 초음파현미경의 V(z) 곡선법은 나노 스케일 박막 계면에서의 접합 상태를 평가할 수 있는 기법으로 그 가능성을 나타내었다.
Zn, Bi 와 V 금속이온 전구체를 사용하여 모노클리닉 결정구조를 갖는 신규 ZnBiVO4 광촉매를 손쉽게 합성 할 수 있는 방법을 개발하였다. 합성된 $ZnBiVO_4$ 광촉매는 XRD 과 FESEM등을 이용하여 미세구조를 분석하였으며, 분석결과 본 삼성분계 금속산화물 반도체 광촉매는 모노클리닉 결정구조를 갖는 것을 알 수 있었다. 저온 수용액방법에 의해 손쉽게 나노 구조를 갖는 $ZnBiVO_4$가 제조되었으며, 그 광촉매의 최소 입자크기는 20-30 nm 이다. $ZnBiVO_4$ 광촉매는 UV-visible DRS (diffuse reflectance spectroscopy)로 그 띠간격(band gap)을 측정하였으며, FT-IR을 사용하여 구조 및 물질 상의 순도를 확인하였다. 그리고 $H_2S$를 광분해하여 수소를 발생하는($122ml/hr{\cdot}g$) 우수한 광촉매 활성을 보여 주었다.
We have fabricated semiconductor nanocrystals using phase separation on flexible substrates for future application in QD-LEDs. The phase separation between the CdSe semiconductor nanocrystals and TPD organic underlayer can occur during the solvent drying, and the CdSe may rise towards the surface of the coated films, which is arranged into close packed array called self-assembly process. In this work, the polyethylene naphthalate (PEN) films of $200{\mu}m$ thickness was used as a flexible substrate, which was coated with indium tin oxide(ITO) as a transparent electrode of <$15{\Omega}/cm^2$. A number of solvents such as chloroform, toluene, and hexane was used and their coating properties were investigated using the spin coating process. The dispersion of both QD and TPD was rather poor in toluene and hexane and resulted in rougher surface and some aggregates. Meanwhile, the surface roughness of templates can be a very critical issue in the fabrication of QD-LED devices. Some experiments was performed to reduce the ~4nm surface roughness of the PEN films and It can be decreased to the minimum of ~0.7nm. Also discussed are the optical properties of semiconductor nanocrystals used in this phase separation and possible large area and continuous coating process for future application.
We report a synthesis of non-toxic InP nanocrystals using non-pyrolytic precursors instead of pyrolytic and unstable tris(trimethylsilyl)phosphine, a popular precursor for synthesis of InP nanocrystals. In this study, InP nanocrystals are successfully synthesized using hexaethyl phosphorous triamide (HPT) and the synthesized InP nanocrystals showed a broad and weak photoluminescence (PL) spectrum. As synthesized InP nanocrystals are subjected to further surface modification process to enhance their stability and photoluminescence. Surface modification of InP nanocrystals is done at $230^{\circ}C$ using 1-dodecanethiol, zinc acetate and fatty acid as sources of ZnS shell. After surface modification, the synthesized InP/ZnS nanocrystals show intense PL spectra centered at the emission wavelength 612 nm through 633 nm. The synthesized InP/ZnS core/shell structure is confirmed with X-ray diffraction (XRD) and Inductively Coupled Plasma - Atomic Emission Spectrometer (ICP-AES). After surface modification, InP/ZnS nanocrystals having narrow particle size distribution are observed by Field Emission Transmission Electron Microscope (FE-TEM). In contrast to uncapped InP nanocrystals, InP/ZnS nanocrystals treated with a newly developed surface modified procedure show highly enhanced PL spectra with quantum yield of 47%.
최근 반도체, 디스플레이 제조장비용 세라믹소재로 대전방지 기능을 가지는 다공성 세라믹스가 시급히 요구되고 있다. 본 연구에서는 다공성 산화티탄-산화망간 기지상에 산화티탄 나노분말을 첨가하여 부분소결함으로써 $10^8-10^{10}$ ohm의 표면저항을 가지고 향상된 기계적 강도를 가지는 다공성 세라믹스를 제조하였다. 나노 크기의 산화티탄 분말을 첨가함으로써 입자 사이의 목 형성을 강화하였고, 그 결과 꺽임강도를 170 MPa(@기공률 15 %), 110 MPa(@기공률 31 %) 수준으로 증가시킬 수 있었다. 이는 P-25를 첨가하지 않았을 때의 꺽임강도(80 MPa @ 기공률 26 %)에 비하여 주목할만큼 증가한 값으로 단순한 기공률 감소가 아닌 목 형성등 미세구조 변화에 따른 것으로 판단된다. 개발 세라믹스를 적용한 OLED 유연소자 제조공정용 공기부상용 모듈을 제작하여 진공척의 성능을 평가하였다.
본 연구에서는 보다 효율적인 광 전기화학적 수소제조를 위하여 광촉매로써 티타니아 골격에 positive-type 반도체로써 B 이온, negative-type 반도체로써 P 이온을 삽입하여 고온 고압에서 용매열(solvothermal)법으로 P- 그리고 B-$TiO_2$ 나노 입자를 제조하였다. 제조한 P-$TiO_2$와 B-$TiO_2$의 물리적 특성은 X-ray 회절분석법, 투과전자현미경, 자외선-가시선 분광광도계, 발광분광계를 통해 확인하였다. 메탄올/물(1:1) 광분해 수소제조 실험 결과, 1.0 mol% B-$TiO_2$ 광촉매가 순수 anatase $TiO_2$ 광촉매 보다 활성이 향상되었으며, 0.5 g의 1.0 mol% B-$TiO_2$ 촉매를 사용한 경우 10시간 반응 시 0.42 mL의 수소가 발생되었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.