• Title/Summary/Keyword: 반능동제어

Search Result 102, Processing Time 0.029 seconds

Smart Passive System Based on MR Damper (MR댐퍼 기반의 스마트 수동제어 시스템)

  • Cho, Sang-Won;Jo, Ji-Seong;Kim, Chun-Ho;Lee, In-Won
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.9 no.1 s.41
    • /
    • pp.51-59
    • /
    • 2005
  • Magnetorheological(MR) dampers are one of the most promising semi active control devices, because they have advantages such as small power requirement, reliability, and low price to manufacture. To reduce the responses of structures with MR dampers, a control system including power supply, controller, and sensors is required. However, when a mount of MR dampers are used to a large?scale civil structure such as cable stayed bridges, the control system becomes complex. Therefore, it is not easy to install and maintain the MR damper based control system. To resolve above difficulties, This paper proposes a smart passive system that consists of a MR damper and an electromagnetic induction(EMI) system. According to the Faraday’s law of induction, EMI system that is attached to the MR damper produces electric energy. The produced energy is supplied to the MR damper. Thus, the MR damper with EMI system does not require any power at all. Furthermore, the induced electric energy is proportional to external loads like earthquakes, which means the MR damper with EMI system is adaptable to external loads without any controller and corresponding sensors. Therefore, it is easy to build up and maintain the proposed smart passive system.

ANFIS Intelligence Control of a Semi-Active Suspension System (반능동 현가장치의 ANFIS 지능제어)

  • 이육형;박명관
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.144-147
    • /
    • 2000
  • In this paper, ANFIS intelligence control of a semi-active suspension system is investigated. The strength of the ER damper is controlled by a high voltage power supply. This paper deals with a two-degree-of-freedom suspension using the damper with ERF for a quarter vehicle system. The control law for semi-active suspensions modeled in this study is developed using passive and ANFlS control method. Computer simulation results show that the semi-active suspension with ERF damper has good performances of ride quality

  • PDF

Performance Evaluation of a Semi-Active ER Damper with Free Piston and Spring (부동피스톤과 스프링을 갖는 반능동 ER댐퍼의 성능평가)

  • Choe, Seung-Bok;Kim, Wan-Gi
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.3 s.174
    • /
    • pp.691-700
    • /
    • 2000
  • This paper presents a novel type of a semiactive damper featuring an electro-rheological(ER) fluid. Unlike conventional cylindrical ER damper, the proposed one has controllable orifices by the intensity of electric fields (We call it orifice type). The dynamic model of the orifice type ER damper is formulated by incorporating field-dependent Bingham properties of an arabic gum-based ER fluid. Design parameters such as electrode gap are subsequently determined on the basis of the dynamic model. After manufacturing the orifice type ER damper, field-dependent damping forces and damping force controllability are empirically evaluated. In the evaluation procedure, conventional cylindrical ER damper is adopted and its performance characteristics are compared with those of the orifice type ER damper. In addition, the proposed one is installed with a full-car model and its vibration control performance associated with a skyhook controller is investigated.

Semi-active control of elastically supported floating slab vibration excited by the moving train mass (열차 운행 중 발생하는 탄성지지 슬라브 진동의 반능동 제어)

  • Lee, Gyu-Seop;Jang, Seung-Yeop;Baek, Jae-Ho;Park, Sang-Gon;Han, Hyun-Hee
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2009.04a
    • /
    • pp.678-678
    • /
    • 2009
  • 환경 소음,진동 개선의 측면에서 철도 레일 하부로 전달되는 진동 및 구조소음을 효과적으로 차단하기 위하여 국내에서도 탄성지지 구조의 플로팅 슬라브를 적용하는 경우가 증가하고 있다. 플로팅 슬라브 구조설계에 있어 주안점은 슬라브 자체 중량에 비하여 열차 중량과 열차 주행간에 발생하는 동하중이 2$\sim$3배 이상 높아 열차 주행 안정성을 고려해야 하는 점이며 열차의 고속화 경향에 따라 동하중의 증가는 더욱 커지고 있다. 특히, 열차의 구조 동특성과 동하중의 주파수 특성을 고려할 경우 슬라브 구조의 동적 설계변수(고유진동수, 감쇠비 등) 결정이 매우 제한되고 있음을 고려하면 탄성지지부의 감쇠 및 강성의 가변 특성의 부여는 매우 중요하다 할 수 있다. 본 연구에서는 MR 댐퍼와 MR 방진고무 등의 반능동 소재를 사용하여 열차 주행간에 발생하는 탄성지지 슬라브의 진동을 제어하는 시뮬레이션을 수행함으로써 적용 가능성을 확인하고자 한다.

  • PDF

Comparison of semi-active friction control method to reduce transient vibration using SDOF model of truss structure (트러스 구조물의 1 자유도 모형을 이용한 반능동 마찰 제어 방법의 과도 응답 저감 성능 비교)

  • Park, Young-Min;Kim, Kwang-Joon;Oh, Hyun-Ung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2011.10a
    • /
    • pp.59-63
    • /
    • 2011
  • Friction damping is one of the attractive vibration control technique for space structures due to its simplicity and large damping capacity. However, passive approaches for friction damping have a limitation because energy is no longer dissipated at sticking. In order to overcome this problem, semi-active control methods to adjust normal force at frictional interface have been studied in previous researches. In this paper, two semi-active friction control method is compared by simulating SDOF model of truss structure. The first approach is on-off control to maximize rate of energy dissipation, whereas the second concept is variable friction force control to minimize amplitude ratio for each half period. The maximum friction force, control variable in on-off control method, is obtained to minimize 1% settling time, and is different from optimal friction force in passive control. Simulation results show that performance of on-off control is better than that of variable friction force control in terms of settling time and controlled friction force.

  • PDF

Semi-Active Control of a Suspension System with a MR Damper of a Large-sized Bus (MR 댐퍼를 이용한 대형 버스 현가장치의 반능동 제어)

  • Yoon, Ho-Sang;Moon, Il-Dong;Kim, Jae-Won;Oh, Chae-Youn;Lee, Hyung-Won
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.4
    • /
    • pp.683-690
    • /
    • 2012
  • In this work, the semi-active control of a large-sized bus suspension system with an MR damper was studied. An MR damper model that can aptly describe the hysteretic characteristics of an MR damper was adopted. Parameter values of the MR damper model were suitably modified by considering the maximum damping force of a passive damper used in the suspension system of a real large-sized bus. In addition, a fuzzy logic controller was developed for semi-active control of a suspension system with an MR damper. The vertical acceleration at the attachment point of the MR damper and the relative velocity between sprung and unsprung masses were used as input variables, while voltage was used as the output variable. Straight-ahead driving simulations were performed on a road with a random road profile and on a flat road with a bump. In straight-ahead driving simulations, the vertical acceleration and pitch angle were measured to compare the riding performance of a suspension system with a passive damper with that of a suspension with an MR damper. In addition, a single lane change simulation was performed. In the simulation, the lateral acceleration and roll angle were measured in order to compare the handling performance of a suspension system using a passive damper with that of a suspension system using an MR damper.

A Study on the Field Test Characteristics of Semi-Active Suspension System with Continuous Damping Control Damper (감쇠력 가변댐퍼를 이용한 반능동 현가장치의 실차실험 특성에 관한 연구)

  • Lee, K.H.;Lee, C.T.;Jeong, H.S.
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.7 no.4
    • /
    • pp.32-38
    • /
    • 2010
  • A semi-active suspension is an automotive technology that controls the vertical movement of the vehicle while the car is driving. The system therefore virtually eliminates body roll and pitch variation in many driving situations including cornering, accelerating, and braking. This technology allows car manufacturers to achieve a higher degree of both ride quality and car handling by keeping the tires perpendicular to the road in corners, allowing for much higher levels of grip and control. An onboard computer detects body movement from sensors located throughout the vehicle and, using data calculated by opportune control techniques, controls the action of the suspension. Semi-active systems can change the viscous damping coefficient of the shock absorber, and do not add energy to the suspension system. Though limited in their intervention (for example, the control force can never have different direction than that of the current speed of the suspension), semi-active suspensions are less expensive to design and consume far less energy. In recent time, the research in semi-active suspensions has continued to advance with respect to their capabilities, narrowing the gap between semi-active and fully active suspension systems. In this paper we are studied the characteristics of vehicle movement during the field test with conventional and semi-active suspension system.

  • PDF