• Title/Summary/Keyword: 반경 방향 성능

Search Result 81, Processing Time 0.031 seconds

Propeller Design of Unmanned Target Drone for the Performance Improvement (무인 표적기의 성능 향상을 위한 프로펠러 설계)

  • Lee Sangmyeong;Sung Hyunggun;Roh Taeseong
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.9 no.1
    • /
    • pp.46-52
    • /
    • 2005
  • A propeller as a propulsion system has been redesigned to improve performance of a target drone. The vortex theory has been applied for the propeller design method. Design variables have been the chord length along the direction of blade radius, the change of blade radius, and the geometric angle of the blade. The existing propeller has been redesigned and modified considering engine RPM change to get the improved thrust at both low and high speeds.

Study on The Modification of The Transition Curve to Increase Operating Speed of Existing Line (기존선 속도 향상을 위한 완화곡선 변경 방안 연구)

  • Kim, Jae-Bok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.10
    • /
    • pp.26-32
    • /
    • 2019
  • The purpose of this study is to improve the running speed on a small-radius curved section on an existing train line. When the transition curve was extended, and the amount of movement in the horizontal direction tended to increase as the curve radius increased. The amount of increase in the transition curve extension was lowest when extending the curve radius, and the amount of horizontal movement was the lowest when changing the curve radius to a cosinusoidal curve. As a result of applying the pass rate after improvement to the Kyeongbu line, there was a time-shortening effect of 9.4 to 11.6% and a facial expression speed increasing effect when the curve radius was fixed and the transition curve was changed to a sinusoidal curve. In conclusion, the most effective way to improve the running speed on an existing train route is to change the image to concrete and to change the relaxation curve to a cosinusoidal curve. The amount of horizontal movement of the track is small, and the speed improvement effect is excellent.

A Study on the Relationship between Ship Stability and Maneuverability Using Free Running Model Experiments (자유항주 모형실험에 의한 선박의 복원성능과 조종성능 관계 연구)

  • Choe, Bo-Ra;IM, Nam-Kyun
    • Journal of Navigation and Port Research
    • /
    • v.40 no.6
    • /
    • pp.353-360
    • /
    • 2016
  • The International Maritime Organization (IMO) has issued international standards for ship maneuverability and stability. These have been established to improve marine safety and influence the direction of research. The previous literature has been researched, but there are few studies on the relationship between ship maneuverability and stability. This study carried out a fundamental experiment to quantitatively evaluate that relationship. Radius of turn and maximum heel angle depending on changing were analyzed through a turning test using a free running model ship. The test results show the change tendency of decreasing turn radius and increasng maximum heel angle according to a GM decrease. A rough estimate equation is proposed to predict the change tendency on radius of turn and angle of maximum heel as GM decreases. Many ships can suddenly experience reduced GM due to unexpected reasons during sailing. The results in this study can be used as fundamental data to estimate a ship's tactical turn diameter and variable heel angle for steering as GM decreases.

Effect of Weber Number and Momentum Flux Ratio on Macroscopic Characteristics of Spray from a Coaxial Porous Injector (웨버수 및 운동량 플럭스비에 따른 동축형 다공성재 분사기의 거시적 분무특성)

  • Kim, Do-Hun;Seo, Min-Kyo;Lee, In-Chul;Koo, Ja-Ye
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.16 no.5
    • /
    • pp.1-9
    • /
    • 2012
  • The gas jet from a coaxial porous injector for two-phase flows is discharged from the porous surface, which encloses the center liquid jet, and the gas and liquid jet interact with each other physically. The wall injected gas jet transfers the radial momentum effectively while the radial gas jet develops to axial jet, and the performance of atomizing and mixing can be improved. In this study, the Weber number and the ratio of momentum flux were controlled by changing the gas injection area and the mass flow rate of the gas jet, and a study on the spray characteristics at the cold-flow test using water and air simulant was performed. It is concluded that the radial momentum transfer concept of a coaxial porous injector gives a positive effect on the atomization and mixing of the two-phase spray.

자유항주 모형선을 이용한 선박의 복원성능과 조종성능 관계 연구

  • Choe, Bo-Ra;Im, Nam-Gyun
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2016.05a
    • /
    • pp.75-77
    • /
    • 2016
  • IMO는 해상에서의 선박 안전 향상을 위해 선박의 복원성능과 조종성능에 관한 국제적 기준을 제시하고 있다. 이러한 기준은 선박 연구자가 수행하는 연구의 방향에도 영향을 미치고 있다. 기존의 수행된 연구는 복원성능과 조종성능의 각각의 분야에서 독립적으로 수행되어 왔으며, 아직 두 분야의 상호 관계에 관한 연구는 미비한 실정이다. 이에 본 논문에서는 선박의 복원성능과 조종성능의 상호 관계를 정량적으로 규명하고자 기초적인 실험 연구를 수행하였다. 이를 위해 복원성능을 나타내는 지표인 GM과 선박의 조종성능을 나타내는 지표인 선회성능을 통해 두 항복 간 상호 관계의 정량적 분석을 시도하였다. 자유항주 모형선을 이용한 선회 시험을 실시하였고, 그 결과 GM 감소에 따른 선회반경 감소 및 초기 횡경사 각도 증가를 확인했으며, 그 변화의 경향은 서로 다르게 나타나는 것을 확인하였다.

  • PDF

Development of Axial Flow Pump Design with Double-Circular-Arc Blade Profile (이중원호익형을 이용한 축류펌프의 설계)

  • 오재민;정명균;팽기석
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2002.04a
    • /
    • pp.27-27
    • /
    • 2002
  • 본 연구에서는 상용코드 FLUENT를 통한 수치모사 결과를 바탕으로 개발한 이중 원호익형의 성능상관식을 축류펌프의 설계에 적용하여 보았다. 일반적으로 익형의 설계는 크게 두 단계를 거치게 된다. 먼저 반경방향의 평형과 설계조건을 만족하는 임펠러와 디퓨저의 입구와 출구의 속도 삼각형을 얻고, 다음으로 적당한 익형을 선택하여 기하학적 형상을 결정하는 과정으로 이루어져 있다.

  • PDF

Performance and Internal Flow Analysis on the 80kW-Class Cross-Flow Hydro Turbine with the Variation of Effective Head (유효낙차에 따른 80kW급 횡류수차의 성능 및 내부유동 해석)

  • Choi, Young-Do;Lim, Jae-Ik;Lee, Young-Ho
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.34 no.5
    • /
    • pp.703-710
    • /
    • 2010
  • Recently, small hydropower attracts attention because of its clean, renewable and abundant energy resources to develop. However, suitable turbine type is not determined yet in the range of small hydropower and it is necessary to study for the effective turbine type. Therefore, a 80kW-Class cross-flow turbine is adopted in this study because of its simple structure and high possibility of applying to small hydropower. The result shows that as effective head increases, tangential and radial flow velocities increase and thus, the increased tangential velocity contributes to the increase of angular momentum and output torque.

Turbomachinery Inlet Flow Measurement without the Effect of Instrumentation (입구 Instrumentation의 영향을 최소화하는 터보기계 성능측정방법)

  • Kang, Jeong-Seek;Ahn, Iee-Ki
    • Aerospace Engineering and Technology
    • /
    • v.8 no.2
    • /
    • pp.8-12
    • /
    • 2009
  • It is absolutely necessary to measure the inlet pressure and temperature of a turbine or a compressor to evaluate the performance of it. And to measure the representative-averaged pressure and temperature of turbine inlet flow, rake is normally used. Rake has several elements for temperature and pressure and several rakes are installed at the inlet to average the radial and circumferential distribution of inlet flow. However the rakes cause unexpected losses and flow distortion at the turbine inlet which make the measured rake data different from true inlet value. So the evaluation of a turbine or a compressor performance becomes not accurate. This study suggest a correlation method which measure the loss by inlet rake and incorporates it in evaluating the performance of turbomachinery.

  • PDF

Radial Performances of Spiral-Grooved Spherical Air Bearings (나선홈을 갖는 반구형 공기 베어링의 반경 방향 성능 측정)

  • Park, Keun-Hyung;Choi, Jeong-Hwan;Choi, Woo-Chon;Kim, Kwon-Hee;Woo, Ki-Myung;Kim, Seung-Kon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.2 s.95
    • /
    • pp.23-30
    • /
    • 1999
  • This paper investigates the radial performance of self-acting spiral-grooved air bearing, used to support small high-speed rotating bodies. Repeatable runout, nonrepeatable runout, stiffness and supporting load are selected as the performance. The clearance between rotor and stator, the stator groove depth, and the rotating speed are chosen as three main parameters affecting the performances. Force application and displacement measurement are done in a noncontact manner, in order not to disturb operation: electromagnetic force is applied to the rotor and gap sensors are used to measure the displacement of the rotor. Experimental results show that repeatable runout decreases as speed, groove depth and clearance decrease. Nonrepeatable runout decreases as clearance decreases, and it has a minimum value at $5.5{\mu}m$ of grove depth and a maximum value at speed of 18.000rpm. Stiffness increases as speed increases and clearance decreases, and has a maximum value around $5.5{\mu}m$ of groove depth. The relationship between force and displacement is linear for small displacement, but becomes nonlinear for large displacement. Supporting load is linearly proportional to the stiffness, and it is a maximum value around $4.75{\mu}m$ of clearance.

  • PDF

Application of Rotary Cutting Test for Performance Assessment of Tunnel Boring Extender (TBE의 굴착성능 평가를 위한 회전식 절삭시험의 적용)

  • Jeong, Hoyoung;Jeon, Seokwon;Cho, Jung-Woo
    • Tunnel and Underground Space
    • /
    • v.32 no.4
    • /
    • pp.243-253
    • /
    • 2022
  • In this study, the cutting efficiency of TBE (Tunnel Boring Extender) was evaluated by using rotary cutting tester. In the rotary cutting test, a specimen which has a drilled hollow hole at the center was made of rock-like material. The specimen was cut by UDC (undercutting disc cutter) with spiral cutting path to simulate the cutting process of TBE. The cutting forces and specific energy were evaluated under different cutting conditions. The results indicated that the cutter forces of UDC linearly increased with the vertical and radial penetration depths. Among the three directional cutter forces, the normal force is larger than other force components. While the specific energy decreased with the two penetration depths, in particular, it was presumed that the specific energy was minimized at a certain value of the ratio of radial to vertical penetration depth.