• Title/Summary/Keyword: 반감응 신호제어

Search Result 9, Processing Time 0.02 seconds

Developing and Evaluation of Coordinated Semi-Actuated Signal Control for Field Application (현장적용을 위한 연동형 반감응 신호제어 개발 및 분석)

  • Park, Soon-Yong;Lee, Suk-Ki;Jeong, Jun-Hwa
    • The Journal of the Korea Contents Association
    • /
    • v.14 no.3
    • /
    • pp.451-462
    • /
    • 2014
  • In this paper, Coordinated Semi-Actuated Signal Control algorithm was developed and evaluated. According to the analysis of simulation, the coordinated semi-actuated signal control led to reduced vehicle delay as the difference of traffic volume between major and minor streets was getting bigger. But when there was relatively high traffic volume, or the equivalent amount of traffic volume on major and minor streets, optimized pre-timed signal control was verified to lower delay times compared to coordinated semi-actuated signal control; however, it might increase pedestrian delay. Therefore, the coordinated semi-actuated signal control should be implemented at intersections where traffic volume is relatively low.

Quantitative Evaluation of the Semi-Actuated Signal Control Systems (반감응 신호제어의 정량적 효과 평가에 관한 연구)

  • Kim, Seung-Jin;Lee, Sang-Soo;Lee, Choul-Ki;Park, Sung-Kyun;Lee, Ho-Jun
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.12 no.3
    • /
    • pp.19-28
    • /
    • 2013
  • This study evaluated the quantitative effects of the deployment of semi-actuated signal systems using field data. For this, a semi-actuted signal system was deployed in the regional roadway network extensively. This paper investigated an operating strategy of semi-actuated signal systems for field application, and implemented the functional strategy into the standard signal controller. The performance was evaluated using three measures of effectiveness such as traffic volume, travel time, and the number of delayed vehicle. From the analysis results, traffic volume increased about 9.4% and 11.3% for morning and evening peak periods, respectively. The average travel time was reduced about 6.3% and 7.8% during morning and evening peak periods, respectively because of the expansion of bandwidths for major streets. In addition, the number of delayed vehicles was reduced about 36.4% and 23.9% for morning and evening peak periods, respectively. It is expected that the effectiveness of signal control system can be improved by incorporating a properly designed semi-actuated signal system in regional roadways with directional demand variation.

Study on Performance and Effectiveness Evaluation Method for Semi-Actuated Signal Control Systems based on Image Detectors (영상검지기 기반 반감응 신호제어시스템의 성능평가 및 효과분석 방법론에 관한 연구)

  • Lee, Chul-Ki;Yun, Il-Soo;Oh, Young-Tae;Lee, Hwan-Pil;Park, Dae-Hyun
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.11 no.1
    • /
    • pp.1-12
    • /
    • 2012
  • Even though the semi-actuated signal control system based on image detectors has been spreading in Korea, any appropriate methods to evaluate the effectiveness and performance has not been established yet. Therefore, this research effort is aiming at developing a systematic method for evaluating the effectiveness and performance of the semi-actuated signal control system based on image detectors. To this end, this research firstly established measures of effectiveness(MOEs) and associated information to be surveyed from fields. Secondly, this research provided a procedure and methodology to evaluate any improvements due to the introduction of a semi-actuated signal control system based on image detectors. The developed methodology was examined at a case study site located in the city of Paju. As a result of the evaluation, the MOEs including traffic throughput, travel speeds, split usage rate, progression rate, etc. showed positive improvements though individual signalized intersections as well as coordinated corridors.

Development and Evaluation of a Left-Turn Actuated Traffic Signal Control Strategy using Image Detectors (영상검지기를 이용한 좌회전 감응식 신호제어전략 개발)

  • Eun, Ji-Hye;O, Yeong-Tae;Yun, Il-Su;Lee, Cheol-Gi;Kim, Nam-Seon;Han, Ung-Gu
    • Journal of Korean Society of Transportation
    • /
    • v.29 no.2
    • /
    • pp.111-121
    • /
    • 2011
  • This paper discusses a method for optimizing the semi-actuated traffic signal control system by adjusting the initial interval according to the number of vehicles waiting for the green light in the actuated phase. We also present a Left-Turn actuated traffic signal control strategy that examines the vehicular noise in the detection area and determines the phase extension and the gap-out. In order to detect the vehicles in real-time, an image detector's Video Image Tracking technology was adopted. A 'Zone in Zone'method was implemented, and the image detection area is segmented into three zones: 1) Zone1 for verifying a vehicles obligatory presence, 2) Zone2 for counting the standby vehicles, and 3) Zone3 for examining the number of vehicles that have passed. The on-site assessment of the Left Turn Actuated Control is carried out using CORSIM, and the results show that the Control Delay decreased by 23.10%, 15.06%, and 4.34% compared to the delays resulted from pre-timed control, semi-actuated control-1 and semi-actuated control-2 traffic signal control systems respectively. The Queue Time also decreased by 36.24%, 20.10% and the Total Time by 14.36%, 7.02% for the same scenario. Which clearly demonstrates the operational efficiency. A sensitivity analysis reveals that the improvement from the propose traffic control strategy tends to increase as the through traffic volume reaches a saturated condition and the left-turn traffic volume decreases.

An Analysis on Signal Control Efficiency in a Three-Leg Intersection Adopting Pedestrian Push-Button System Following Pedestrian volume (3지 교차로에서 보행자 교통량에 따른 보행자작동신호기를 이용한 신호제어효율에 관한 분석)

  • Kim, Eung-Cheol;Cho, Han-Seon;Jung, Dong-Woo;Kim, Hyoung-Soo
    • International Journal of Highway Engineering
    • /
    • v.11 no.3
    • /
    • pp.121-128
    • /
    • 2009
  • This study has proposed the signal operating system to use both semi-actuated signal control and pedestrian push-button as a way to make up for the problems of 3 leg intersections which are operated inefficiently in the signal operation, one of the methods of traffic operations. In case of the semi-actuated signal control, it can reduce delay inside the intersection by serving to uncongested traffic on the main road where there is not much traffic volume on the secondary road and push-button signal can reduce unnecessary waiting time it could happen to vehicles by operating it though there is no pedestrian. Quantitative analysis was tried regarding the average delay reduction per vehicle using VISSIM, microscopic simulation program regarding how much effect it has compared with the existing signal control system and semi-actuated signal control system when the above two advantages are collected. The field test was performed for one three-leg intersection of Incheon. According to respectively signal control method pedestrian traffic changed and executed a sensitivity analysis. The result which compares the average delay time per a vehicle of scenarios, the signal control method of using the pedestrian push-button system in comparison with the fixed signal control method showed to decrease effect of a minimum 3.7 second (10%), a maximum 5.8 second (16%). When the pedestrian traffic volume was 20% or less of the measurement traffic volume, The signal control method of using the pedestrian push-button system appeared to be more efficient the semi-actuated signal control with object intersection.

  • PDF

Analysis of the Macroscopic Traffic Flow Changes using the Two-Fluid Model by the Improvements of the Traffic Signal Control System (Two-Fluid Model을 이용한 교통신호제어시스템 개선에 따른 거시적 교통류 변화 분석)

  • Jeong, Yeong-Je;Kim, Yeong-Chan;Kim, Dae-Ho
    • Journal of Korean Society of Transportation
    • /
    • v.27 no.1
    • /
    • pp.27-34
    • /
    • 2009
  • The operational effect of traffic signal control improvement was evaluated using the Two-Fluid Model. The parameters engaged in the Two-Fluid Model becomes food indicators to measure the quality of traffic flow due to the improvement of traffic signal operation. A series of experiment were conduced for the 31 signalized intersections in Uijeongbu City. To estimate the parameters in the Two-Fluid Model the trajectory informations of individual vehicles were collected using the CORSIM and Run Time Extension. The test results showed 35 percent decrease of average minimum trip time per unit distance. One of the parameters in the Two-Fluid Model is a measure of the resistance of the network to the degraded operation with the increased demand. The test result showed 28 percent decrease of this parameter. In spite of the simulation results of the arterial flow, it was concluded that the Two-Fluid Model is useful tool to evaluate the improvement of the traffic signal control system from the macroscopic aspect.