• Title/Summary/Keyword: 박판성형가공

Search Result 179, Processing Time 0.022 seconds

A Study on the Formability of Sheet Metal Under Counter Pressure Deep Drawing (대향 액압 디프드로잉법 시 박판 성형성에 관한 연구)

  • 황종관;강대민;정수종
    • Transactions of Materials Processing
    • /
    • v.11 no.8
    • /
    • pp.676-681
    • /
    • 2002
  • The square cup deep drawing simulations for hydraulic counter pressure deep drawing are carried out by the finite element method and the formability factors which affect to the formability in case of that process are investigated. As a result, it is found that the thickness distributions keep the higher quality than that of the conventional deep drawing, and the maximum pressure increased the thickness at the die profile regions of blank. But friction coefficient decreased the thickness at the same regions.

Friction Model for Sheet Metal Forming Analysis(Part 2 :Mathematical Model) (박판성형 해석용 마찰 모델(2부:수학적 모델))

  • 금영탁;이봉현
    • Transactions of Materials Processing
    • /
    • v.13 no.5
    • /
    • pp.461-465
    • /
    • 2004
  • Based on the experimental observation, the mathematical friction model, which is an essential information for analyzing the forming process of sheet metal, is developed considering lubricant viscosity, surface roughness and hardness, punch comer radius, and punch speed. By comparing the punch load found by FEM with a proposed friction model with experimental measurement when the coated and uncoated steel sheets are formed in 2-D geometry in dry and lubricant conditions, the validity and accuracy of the developed friction model are demonstrated.

A Study on Static-Implicit Forming Analysis of the Magnesium Alloy Sheet (마그네슘 합금 판재의 정적-내연적 성형해석에 관한 연구)

  • Son, Young-Ki;Jung, Dong-Won
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.7 no.4
    • /
    • pp.44-49
    • /
    • 2008
  • The characteristic of magnesium alloy is the most light in utility metal, the effect of electromagnetic wave interception, excellent specific strength and absorptiveness of vibration. Although magnesium alloy with above characteristic is a subject matter which is suitable in world-wide tendency of electrical component frame, sheet magnesium alloy is difficult to process. Therefore, forming analysis of sheet magnesium alloy and applying warm-working to process are indispensable. Among Finite element method, the static implicit finite element method is applied effectively to analyze sheet magnesium alloy stamping process, which include the forming stage. In this study, it was focused on the crack, wrinkling and spring back on sheet magnesium alloy stamping by the static implicit analysis. According to this study, the result of simulation will give engineers good information to access the forming technique on sheet magnesium alloy. And its application is being increased especially in the production of electrical component frame for the cost reduction, saving of defective ratio, and improvement of Productivity.

  • PDF

Optimum Blank Design of Automobile Sub-Frame (우물정(井)자형 Sub-frame의 블랭크 설계)

  • Kim, Jong-Yop;Kim, Nak-Soo;Heo, Man-Seong
    • Transactions of Materials Processing
    • /
    • v.7 no.3
    • /
    • pp.260-273
    • /
    • 1998
  • A new blank design method is proposed to predict the optimum initial blank shape in the sheet metal forming process. The rollback method for blank shape design takes the difference between final deformed shaped and target contour shape into account. Based on the method a computer program composed of blank design module FE-analysis program and mesh generation module is developed. The rollback method is applied to square cup drawing process with the flange of unifiorm size around its periphery to confirm its validity. The optimum initial blank shape is obtained from an arbitrary square blank after three modification. Good agreements are recognized between the numerical results and the published results for initial blank shape and thickness strain distribution. The optimum blank shape for two parts of automobile sub-frame is designed, The thickness distribution and the level of punch load is improved. Also the method is applied to design the weld line in the tailor-welded blank. It is concluded that the rollback method is an effective and convenient method for an optimum blank shape design.

  • PDF

Crash Analysis of the ULSAB-AVC Model with Considering Forming Effects (박판성형가공을 고려한 자동차 충돌해석)

  • Huh, H.;Yoon, J.H.;Bao, Y.D.;Kim, S.H.;Park, S.H.
    • Transactions of Materials Processing
    • /
    • v.15 no.8 s.89
    • /
    • pp.556-561
    • /
    • 2006
  • Most of auto-body members are composed of stamping parts. These parts have the non-uniform thickness and plastic work hardening distribution during the forming process. This paper is concerned with the side impact analysis of the ULSAB-AVC model according to the US-SINCAP in order to compare the crashworthiness between the model with and without considering the forming effect. The forming effect is ca]ciliated by one-step forming analysis for several members. The crashworthiness is investigated by comparing the deformed shape of the cabin room the energy absorption characteristics and the intrusion velocity of a car. The result of the crash analysis demonstrates that the crash mode, the load-carrying capacity and energy absorption can be affected by the forming effect. It is noted that the design of an autobody should be carried out considering the forming effect for accurate assessment of crashworthiness.

Optimum Blank Design of Automobile Sub-Frame (우물정자형 Sub-frame의 블랭크 설계)

  • 김종엽;김낙수;허만성
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1998.03a
    • /
    • pp.185-195
    • /
    • 1998
  • A new blank design method is proposed to predict the optimum initial blank shape in the sheet metal forming process. The rollback method for blank shape design takes the difference between final deformed shape and target contour shape into account. Based on the method, a computer program composed of blank design module, FE-analysis program and mesh generation module is developed. The rollback method is applied to square cup drawing process with the flange of unifiorm size around its periphery to confirm its validity. The optimum initial blank shape is obtained from an arbitrary square blank after three modifications. Good agreements are recognized between the numerical results and the published results for initial blank shape and thickness strain distribution. The optimum blank shape for two parts of automobile sub-frame is designed. The thickness distribution and the level of punch load is improved. Also, the method is applied to design the weld line in the tailor-welded blank. It is concluded that the rollback method is an effective and convenient method for an optimum blank shape design.

  • PDF

Numerical Study on Flexible Forming Process for Sheet Metal (박판용 가변성형공정의 수치적 연구)

  • Heo, S.C.;Seo, Y.H.;Park, J.W.;Ku, T.W.;Song, W.J.;Kim, J.;Kang, B.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.10a
    • /
    • pp.281-284
    • /
    • 2009
  • Flexible forming process for sheet metal using reconfigurable die is introduced based on numerical simulation. Numerical simulation of sheet metal forming process is carried out by using flexible dies model instead of conventional matched die set. Elastic cushion which has high resilience behavior from excessive deformation are inserted between forming punches and blank material for smoothing the forming surface which has discrete due to characteristics of the flexile die. As an elastic cushion, urethane pads are utilized using hyperelastic material model in the simulation. Formability in view of surface defect such as onset of dimple is compared with regard to various punch sizes. Consequently, it is confirmed that the flexible forming process for sheet material has appropriate capability and feasibility for manufacturing of smoothly curved surface instead of conventional die forming process.

  • PDF

Robust design of springback in U-channel forming using complex method (콤플렉스법을 이용한 U-채널 성형의 스프링백 강건 설계)

  • Yin, Jeong-Je;Kim, Kyung-Mo;Park, Jong-Cheon
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.12 no.1
    • /
    • pp.117-125
    • /
    • 2013
  • Variations of springback in stamped parts are induced by the uncontrollable noises including the variation of incoming material properties, lubrication and other forming process parameters. Reduction of springback variation is very important during springback compensation processes on stamping dies and assembly processes. To reduce the variation of springback, a robust optimization methodology which uses complex method combined with orthogonal array is proposed. The proposed method is applied to the robust design of U-channel die for the reduction of side wall curl. It is shown that the drawbead and die radius of U-channel draw die can be effectively optimized by the proposed method.

A Study of prediction problem to Sheet metal forming processing (박판성형 공정에서의 불량 예측에 관한 연구)

  • Ko Hyung-Hoon;Lee Chan-Ho;Moon Won-Sub;Park Young-Keun;Jung Dong-Won
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.10a
    • /
    • pp.398-401
    • /
    • 2005
  • The characteristic of sheet metal process is the few loss of material during process, the short processing time and the excellent price and strength. Such press-forming process are the used machine ability and the characteristic, used material, the accuracy of the part which becomes processing and side condition of a process are considered and the designed. The purpose of this study is apply efficiently sheet metal forming processing by 3D formation-analyzed program simulations in the site. By a study, forming process was simulation to drawing and trimming and cam process using static-implicit method software. By making apply this to an industrial site the productivity improvement and cost reduction etc. effect able was predicted.

  • PDF

Forming Limit Diagram of Laser Welded Blank and Its Application to Forming Analysis of Stamping Dies (레이저 용접 합체박판의 성형한계도와 스탬핑 금형 성형해석에 적용)

  • 금영탁;구본영;박승우;유석종;이경남
    • Transactions of Materials Processing
    • /
    • v.9 no.1
    • /
    • pp.3-9
    • /
    • 2000
  • The new FLD of the laser welded blank, which includes FLCs of welded zone and base metals, is introduced. For the forming limits of welded zone, the hemispherical dome punch tests were performed with various widths of asymmetric specimen. The FLC0 as well as the dome height at fracture associated with various specimen widths in the same and different thickness combinations were found to see the formability depending on thickness combinations. In order to show the application of the new FLD, the measured strains of squared cup drawing and simulated strains of door inner panel stamping were compared with those of FLCs. The successful prediction of fracture in the applications reveals that the forming limits of welded zone and base metals should be separately found for more accurate evaluation of the formability and workability of the laser welded blank.

  • PDF