• Title/Summary/Keyword: 박막 실리콘 태양전지

Search Result 294, Processing Time 0.031 seconds

Co-sputtering법으로 제작된 화합물 반도체 박막형 태양전지에서 $CuInSe_2$(CIS) 광흡수층의 열처리 효과

  • Kim, Hae-Jin;Lee, Hye-Ji;Son, Seon-Yeong;Park, Seung-Hwan;Kim, Hwa-Min;Hong, Jae-Seok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.269-269
    • /
    • 2010
  • 현재 화석연료의 부족으로 인한 에너지 수급의 불균형, 자연환경의 파괴로 인해 대체에너지 개발이 절실히 요구되고 있다. 이러한 문제점을 극복하기 위한 방안으로 태양전지에 대한 관심이 높아지고 있다. 기존 결정형 실리콘 태양전지와 비교해 화합물 반도체를 기반으로 한 박막형 태양전지는 친환경적인 제품이면서 제조원가를 절감시킬 수 있고, 반영구적인 수명 및 값싼 기판을 활용할 수 있는 장점으로 인해 활발한 연구가 진행되고 있다. 본 실험에서는 Co-sputtering법으로 제작된 $CuInSe_2$(CIS)를 광활성층으로 한 박막형 태양전지에서 실온 ${\sim}550^{\circ}C$의 다양한 온도에서 후열 처리된 CIS 박막들의 전기적, 구조적, 광학적인 특성들을 분석하였다. 제작된 박막들 가운데 Hall Effect 측정결과 $550^{\circ}C$에서 후열 처리된 박막이 가장 높은 1.227E+22(/$cm^3$)의 캐리어 농도와 1.581(cm/$V{\cdot}s$)의 홀 이동도를 가지며, 3.092E-4(${\Omega}{\cdot}cm$)의 가장 낮은 비저항 값을 갖는 것으로 나타났다. EFM 측정결과 열처리 하지 않은 박막에 비해 후열처리된 CIS 박막의 전도성이 전체적으로 높아졌다. 특히, $550^{\circ}C$에서 후열 처리된 박막의 표면은 전체적으로 전기 전도성이 높은 결정립들이 골고루 분포하며 가장 높은 표면 포텐셜 에너지 값을 갖는 것으로 나타났다. 박막들의 구조적 특성을 분석하기 위해 SEM과 XRD를 측정한 결과, $350^{\circ}C$에서 후열 처리된 박막들은 열처리 되지 않은 박막과 비교해 표면형상 변화가 일어났으며, $550^{\circ}C$에서 후열 처리된 CIS 박막들은 $CuInSe_2$(112) 방향이 향상된 chalcopyrite-like 구조를 가지면서 박막 밀도가 높고 결정립의 크기가 증가된 것을 확인하였다. 이는 박막 성장시 기판온도의 상승으로 CIS 박막 내에서 셀레늄의 확산과 상호작용으로 3원 화합물이 재결정화되어 구조적인 특성향상에 기여하였기 때문이다. 결론적으로 본 연구는 CIS 광활성층에서 후열 처리의 효과들 뿐만아니라 박막 증착시 co-sputtering법을 이용함으로써 증착시간의 감소 및 대면적화와 대량생산으로도 적용 가능함을 제시하고자 한다.

  • PDF

ZnO 나노 입자가 분산 된 Resin을 이용한 굴절률 조절 및 광 산란 패턴 형성을 통한 비정질 실리콘 박막태양전지의 효율 향상

  • Ko, Bit-Na;Kim, Jae-Hyeon;Kim, Gyu-Tae;Sin, Ju-Hyeon;Jeong, Pil-Hun;Chu, So-Yeong;Choe, Hak-Jong;Hyeon, Seok;Lee, Heon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.295-295
    • /
    • 2014
  • 일반적으로 박막 태양전지의 효율은 박막 종류에 따른 광 흡수율에 의해 결정되며, 이는 증착한 박막의 두께에 의해 결정된다. 증착한 박막의 두께가 두꺼워질수록 광 흡수율은 증가하지만, 박막 두께가 지나치게 두꺼워지면 열화 현상으로 인한 모듈의 효율 감소가 생기므로 적절한 박막의 두께가 요구된다. 특히 a-Si:H의 경우 가시광 영역에서 높은 흡수계수를 가지고 있어서 얇은 박막 두께로도 태양전지의 제작이 가능하지만, 동일한 박막 두께에서 효율을 더욱 향상시키기 위한 다양한 광 포획 기술에 대한 연구가 많이 진행 되고 있다. 본 연구에서는 자외선을 이용한 nano-imprint lithography 기술을 이용하여 a-Si:H 태양전지의 유리기판 위에 pattern을 삽입하여 광 산란 효과를 향상 시키고자 하였다. 또한 유리기판의 굴절률 (n=1.5)과 투명전극의 굴절률 (n=1.9)의 중간 값을 갖는 ZnO nanoparticles (n=1.7)이 분산 된 imprinting resin을 사용함으로써 점진적으로 굴절률을 변화시켜, 최종적으로 a-Si:H 층까지의 광 투과율을 높이고자 하였다. 제작한 기판의 종류는 다음과 같다. 첫 번째 기판으로는 유리기판 위에 ZnO nanoparticles이 분산 된 imprinting resin을 spin-coating 하여 점진적인 굴절률의 변화에 의한 투과도 향상을 확인하고자 하였다. 두 번째 기판으로는 규칙적인 배열을 갖는 micro 크기의 패턴을 형성하였다. 마지막으로는 불규칙한 배열을 갖는 nano 크기와 micro 크기가 혼재 된 패턴을 형성하여 투과도 향상과 동시에 빛의 산란을 증가시키고자 하였다. 후에 이 세가지 종류를 기판으로 사용하여 a-Si:H 기반의 박막 태양전지를 제작하였다. 먼저 제작한 박막 태양전지용 기판의 광학적 전기적 특성을 분석하였다. 유리 기판 위에 형성한 패턴에 의한 roughness 변화를 확인하기 위해 atomic force microscopy (AFM)를 이용하여 시편의 표면을 측정하였다. 또한 제작한 유리 기판 위에 투명 전극층을 형성 후, 이로 인한 전기적 특성의 변화를 확인하기 위해 hall measurement system을 이용하여 sheet resistance, carrier mobility, carrier concentration 등의 특성을 측정하였다. 또한, UV-visible photospectrometer 장비를 이용하여 각 공정마다 시편의 광학적 특성(투과도, 반사도, 산란도, 흡수도 등)을 측정하였고, 최종적으로 제작한 박막 태양전지의 I-V 특성과 외부양자효율을 측정하여 태양전지의 효율 변화를 확인하였다. 그 결과 일반적인 유리에 기판에 제작된 a-Si:H 기반의 박막 태양전지에 비해, ZnO nanoparticles이 분산 된 imprinting resin을 spin-coating 하여 점진적인 굴절률 변화를 준 것만으로도 약 12%의 태양전지 효율이 증가하였다. 또한, micro 크기의 패턴과 nano-micro 크기가 혼재된 패턴을 형성한 경우 일반적인 유리를 사용한 경우에 비해 각각 27%, 36%까지 효율이 증가함을 확인하였다.

  • PDF

Effects of Annealing Conditions on Physical and Electrical Properties of CdTe Thin Film for Solar Cell (태양전지용 CdTe 박막의 물리적.전기적 특성에 미치는 열처리 효과)

  • 김현수;조영아;염근영;신성호;박정일;박광자
    • Journal of the Korean Vacuum Society
    • /
    • v.4 no.3
    • /
    • pp.306-312
    • /
    • 1995
  • 본 연구에서는 비정질 실리콘과 CuInSe2와 함께 지상용 태양전지재료로 널리 연구되고 있는 다결정 CdTe 박막의 열처리방법으로서 로열처리와 반도체 공정에서 사용되는 급속열처리 방법을 이용하여 이들 열처리의 효과를 분석함으로써 태양전지용 다결정 CdTeq 박막에 적합한 효율적인 열처리 방법에 대한 연구를 수행하였다. 증착 후 열처리조건에 따른 결정구조, 결정립 크기, 표면과 박막내부의 성분, 밴드갭 에너지값, 그리고 전기비저항 등을 측정하여 태양전지용 CdTe 박막의 물리적.전기적 특성에 미치는 열처리효과를 관찰하였다. 연구결과 30$0^{\circ}C$에서 증착하고 CdCI2 처리 후 $400^{\circ}C$ 30분간 로열처리를 한 경우, 그리고 $200^{\circ}C$에서 증착한 후 $500^{\circ}C$ 부근에서 1분간 급속열처리를 한 경우 다결정 CdTe 박막의 물리적 전기적 특성이 현저히 향상됨을 알 수 있었다. 특히 급속열처리를 한 경우 로열처리에 비해 결정립의 크기는 작으나 전기비저항이 낮고 밴드갭에너지가 단결정에 더욱 접근하며 태양전지용 다결정 CdTe 박막의 열처리 방법으로 적용할 가치가 있는 방법으로 사료된다.

  • PDF

PECVD 공정에 의해 증착된 비정질 실리콘 박막의 특성에 관한 연구

  • Lee, Yong-Su;Seong, Ho-Geun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.223.2-223.2
    • /
    • 2013
  • 비정질 실리콘은 태양전지, 트랜지스터, 이미지 센서 등 다양한 분야에서 응용되고 있으며 새로운 박막 소자 개발을 위한 소재로서 많은 연구가 진행되고 있다. 하지만 소자개발에 있어 공정상에서 발생하는 비정질 실리콘 박막의 높은 응력(stress)은 소자의 특성을 떨어뜨리는 문제점을 갖는다. 따라서 우수한 특성의 소자 개발을 위해서는 보다 낮은 응력을 갖는 비정질 실리콘 박막 증착 및 공정 조건에 따른 응력 조절이 필요하다. 저응력의 비정질 실리콘 박막 증착은 보다 낮은 반응온도에서 증착속도를 최소로 하여 성장되어야 하는데 이는 플라즈마기상증착(Plasma enhanced chemical vapor deposition, PECVD) 시스템에 의해 가능하다. 따라서 본 연구에서는 PECVD 시스템을 사용하여 비정질 실리콘 박막을 증착하였고 그 특성을 분석하였다. 이 때 증착 온도, rf 파워, 공정 압력은 실험결과로부터 얻어진 낮은 박막 증착속도 하에서 안정적으로 증착이 가능한 조건으로 일정하게 유지하여 실험하였다. 공정 가스는 SiH4/He/N2의 혼합가스를 사용하였고 응력 조절을 위해 SiH4/He 가스비를 일정한 비율로 변화하여 비정질 실리콘 박막을 증착하였다. 증착된 박막의 두께 및 표면 특성은 field emission scanning electron microscopy 및 atomic force microscopy를 이용하여 분석하였고, energy dispersive X-ray 분석을 통하여 정량 및 정성적 분석을 수행하였다. 그리고 stress measurement system을 이용하여 박막의 응력을 측정하였고 X-ray diffraction 측정 및 ellipsometry 측정으로부터 증착된 박막의 결정성, 굴절률 및 oiptical bandgap을 분석하였다.

  • PDF

Fabrication of a-Si:H/a-Si:H Tandem Solar Cells on Plastic Substrates (플라스틱 기판 위에 a-Si:H/a-SiGe:H 이중 접합 구조를 갖는 박막 태양전지 제작)

  • Kim, Y.H.;Kim, I.K.;Pyun, S.C.;Ham, C.W.;Kim, S.B.;Park, W.S.;Park, C.K.;Kang, H.D.;You, C.;Kang, S.H.;Kim, S.W.;Won, D.Y.;Choi, Y.;Nam, J.H.
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.104.1-104.1
    • /
    • 2011
  • 가볍고, 유연성(flexibility)을 갖는 박막(thin film)형 플랙서블 태양전지(flexible solar cell)는 상황에 따른 형태의 변형이 가능하여, 휴대가 간편하고, 기존 혹은 신규 구조물의 지붕(rooftop)등에 설치가 용이하여, 차세대 성장 동력 분야에서 각광받고 있다. 그러나 아직까지 플랙서블 태양전지는 제작시 열에 의한 기판의 변형, 기판 이송시 너울 현상, 대면적 패터닝(patterning) 기술 등 많은 어려움 등으로 웨이퍼나 글라스 기판에 제조된 태양전지 대비 낮은 광전환 효율을 갖는다. 따라서 본 연구에서는 플랙서플 태양전지 성능개선을 위해 3.5세대급 ($450{\times}450cm^2$) 스퍼터(sputter), 금속유기 화학기상장치 (MOCVD), 플라즈마 화학기상장치 (PECVD), 레이저 가공장치 (Laser scriber)를 이용하여 a-Si:H/a-SiGe:H 이중접합(tandem)을 갖는 태양전지를 제작하였고, 광 변환효율 특성을 평가하였다. 전도도(conductivity), 라만(Raman)분광 및 UV/Visible 분광 분석을 통하여 박막의 전기적, 구조적, 광학적 물성을 평가하여 단위박막의 물성을 최적화 했다. 또한 제작된 태양전지는 쏠라 시뮬레이터 (Solar Simulator)를 이용하여 성능 평가를 수행하였고, 상/하부층의 전류 정합 (current matching)을 위해 외부양자효율 (external quantum efficiency) 분석을 수행하였다. 제작된 이중접합 접이식 태양전지로 소면적($0.25cm^2$)에서 8.7%, 대면적($360cm^2$ 이상) 8.0% 이상의 효율을 확보하였으며, 성능 개선을 위해 대면적 패턴 기술 향상 및 공정 기술 개선을 수행 중이다.

  • PDF