• Title/Summary/Keyword: 박막형 열전소재

Search Result 4, Processing Time 0.025 seconds

박막형 열전 소재의 두께 방향 열전도도 측정 장비 개발

  • Kim, Yeong-Seok;Ha, Su-Hyeon;Gang, Sang-U;Song, Jae-Yong;Park, Seon-Hwa;Hyeon, Seung-Min
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.112-112
    • /
    • 2016
  • 열전 발전은 버려지는 폐열을 재사용 가능한 에너지로 전환할 수 있다는 점에서 차세대 청정 에너지원으로 분류되며, 19세기 초 발견된 이래 꾸준히 연구되어온 연구 분야이다. 특히 1990년대 열전소재로의 나노 기술의 접목에 따라 열전성능(figure of merit, ZT)이 2 배 이상 증가 되면서, 고성능의 열전 소재 개발을 위해 나노구조화 연구가 활발히 진행되고 있다. 하지만, 기존의 열전 특성 측정용 상용 장비의 경우, 벌크형 소재를 대상으로 설계되어 연구실 수준에서 개발되고 있는 마이크로미터 스케일의 두께를 가지는 박막형 열전 소재의 두께 방향 (cross-plane)의 열전 특성을 평가하는데 정밀성이 떨어져서 적합하지 않다. 이러한 표준화된 측정 기술의 부재로 인하여 최근 연구되고 있는 나노소재들의 열전 특성 측정 결과를 정확하게 측정하지 못하고 있다 [1] 본 연구에서는 박막형 열전 소재의 열전성능을 평가하는데 가장 중요한 요소인 열전도도를 측정하기 위해 장비를 설계하고, 장비의 측정 능력에 대해 평가하였다. 특히, 측정 포인트 간 큰 온도 차가 발생하여 비교적 쉽게 측정이 가능한 너비 방향 (in-plane) 이 아닌, 온도 차가 작은 박막의 두께 방향의 열전도도를 측정하였다. 그리고 센서의 측정 능력을 평가하기 위해, 폴리이미드를 대상으로 $-10-70^{\circ}C$ 온도 범위에서 측정한 결과와 벌크형 소재 대상으로 신뢰성이 확보된 보호열판법을 이용해 측정한 결과를 비교하였다.

  • PDF

Electrodeposition of Thermoelectric Nanowires (전기도금법에 의한 열전 나노와이어 제조)

  • Lee, Gyu-Hwan;Lee, Gyeong-Hwan;Kim, Dong-Ho;Lee, Geon-Hwan;Kim, Uk-Jung
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.59-60
    • /
    • 2007
  • 열전재료는 냉각과 발전 분야에서 매우 매력적인 친환경 에너지 소재이다. 열전 재료의 효율을 나타내는 성능 지수는 ZT로 나타내는데, 기존의 bulk 재 열전소재의 경우 그 값이 1 내외이다. 그러나 기존의 타 기술과의 경쟁에서 우위를 점하기 위해서는 ZT 값이 3이 되어야 한다. 이론적인 계산에 의하면 나노 박막이나 나노와이어 형태로 열전재료를 제어를 함으로써 ZT 값의 현저한 향상이 예상되어 ZT값이 3이상의 값도 얻을 수 있을 것으로 기대된다. 전기도금법은 나노와이어 형태의 열전재료를 경제적으로 대량 생산할 수 있는 가장 유력한 방법이다. 본 발표에서는 전기도금법을 이용하여 n-형 BiTe 계와 p-형 BiSbTe계 열전반도체 나노와이어를 제조하고 그 특성을 측정한 연구결과를 소개한다.

  • PDF

The study of thermal properties of graphene/Cu foam hybrid structures (그래핀/구리폼과 그래파이트 하이브리드 구조체의 열전도 특성 연구)

  • Kim, Hee Jin;Kim, Hyeungkeun;Kim, Yena;Lee, Woo Sung;Yoon, Dae Ho;Yang, Woo Seok
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.23 no.5
    • /
    • pp.235-240
    • /
    • 2013
  • Pure-carbon materials such as graphite, graphene, carbon nanotubes, and diamond have very high thermal conductivities. The reported thermal conductivity of graphene is in the range 3000~5000W/m-K at room temperature. Here, we developed graphene/cu foam hybrid type heat spreader to obtain higher thermal conductivity than Cu foam. Hybrid materials were characterized using optical microscopy (OM), scanning electron microscopy (SEM) and thermal conductivity measurement system; LFA (Laser Flash Analysis @ LFA 447, NETZSCH). We suggest that excellent thermal properties of graphene/cu foam hybrid structures are beneficial for all proposed electrical applications and can lead to a thermal management application.

Growth of Bi-Te Based Materials by MOCVD and Fabrication of Thermoelectric Thin Film Devices (MOCVD 법에 의한 Bi-Te계 열전소재 제조 및 박막형 열전소자 제작)

  • Kwon, Sung-Do;Ju, Byeong-Kwon;Yoon, Seok-Jin;Kim, Jin-Sang
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.12
    • /
    • pp.1135-1140
    • /
    • 2008
  • Bismuth-telluride based thin film materials are grown by Metal Organic Chemical Vapor Deposition(MOCVD). A planar type thermoelectric device has been fabricated using p-type $Bi_{0.4}Sb_{1.6}Te_3$ and n-type $Bi_2Te_3$ thin films. Firstly, the p-type thermoelectric element was patterned after growth of $4{\mu}m$ thickness of $Bi_{0.4}Sb_{1.6}Te_3$ layer. Again n-type $Bi_2Te_3$ film was grown onto the patterned p-type thermoelectric film and n-type strips are formed by using selective chemical etchant for $Bi_2Te_3$. The top electrical connector was formed by thermally deposited metal film. The generator consists of 20 pairs of p- and n-type legs. We demonstrate complex structures of different conduction types of thermoelectric element on same substrate by two separate runs of MOCVD with etch-stop layer and selective etchant for n-type thermoelectric material. Device performance was evaluated on a number of thermoelectric devices. To demonstrate power generation, one side of the sample was heated by heating block and the voltage output measured. As expected for a thermoelectric generator, the voltage decreases linearly, while the power output rises to a maximum. The highest estimated power of $1.3{\mu}W$ is obtained for the temperature difference of 45 K. we provide a promising procedure for fabricating thin film thermoelectric generators by using MOCVD grown thermoelectric materials which may have nanostructure with high thermoelectric properties.