• Title/Summary/Keyword: 박리작용

Search Result 131, Processing Time 0.04 seconds

Crack Control of Flexure-Dominant Reinforced Concrete Beams Repaired with Strain-Hardening Cement Composite (SHCC) Materials (변형경화형 시멘트 복합체를 활용한 휨항복형 철근콘크리트 보의 균열제어)

  • Cha, Jun-Ho;Park, Wan-Shin;Lee, Young-Oh;Kim, Sun-Woo;Yun, Hyun-Do
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.1
    • /
    • pp.109-120
    • /
    • 2011
  • This paper presents an experimental study results on the crack control of flexure-dominant reinforced concrete beams repaired with strain-hardening cement composite (SHCC). Five RC beams were fabricated and tested until failure. One unrepaired RC beam was a control specimen (CBN) and remaining four speciemens were repaired with SHCC materials. The test parameters included two types of SHCC matrix ductility and two types of repair method (patching and layering). Test results demonstrated that RC beams repaired with SHCC showed no concrete crushing or spalling until final failure, but numerous hair cracks were observed. The control specimen CBN failed due to crushing. It is important to note that SHCC matrix can improve crack-damage mitigation and flexural behavior of RC beams such as flexural strength, post peak ductility, and energy dissipation capacity. In the perspective of crack width, crack widths in RC beams repaired with SHCC had far smaller crack width than the control specimen CBN under the same deflection. Especially, the specimens repaired with SHCC of PVA0.75%+PE0.75% showed a high durability and ductility. The crack width indicates the residual capacity of the beam since SHCC matrix can delay residual capacity degradation of the RC beams.

A Study on the Durability Improvement of Highway-Subsidiary Concrete Structure Exposed to Deicing Salt and Freeze-Thaw (동결융해 및 제설제에 노출된 고속도로 소구조물 콘크리트의 내구성 개선 연구)

  • Lee, Byung-Duk;Choi, Yoon-Suk;Kim, Young-Geun;Choi, Jae-Seok;Kim, Il-Sun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.4
    • /
    • pp.128-135
    • /
    • 2016
  • In the current concrete structure of the highway is still the major problem most of concrete deterioration caused by the freeze-thaw and deicing salt, which is of issues that are not completely resolved. In particular, a single freezing event does not cause much harm, durability of concrete under multi-deterioration environment by repeated freeze-thaw and deicing salt is rapidly degraded and reduce its service life. In this study, the exposure environmental condition according the regional highway points were established. The damage condition and chloride content of the concrete at general and severe environmental exposure condition were also investigated. In addition, the experimental test of chloride ion permeability, scaling resistant and freeze-thaw resistance were carried out to improve the durability of the mechanical placing concrete of subsidiary structure. According to the results of this study, in observation of concrete surface condition, the concrete exposed by severe environmental condition showed broad ranges of damage with high chloride contents. Meanwhile, the water-binder(W/B) ratio and the less water content, and fly ash concrete than the specified existing mix proportion is significantly improved the durability. Also, the optimal mix proportion derived for test is satisfied the strength and air contents, water-binder ratio, and durability criteria of concrete specifications, as well as service life seems greatly improved.

Effect of Turbidity Changes on Tissues of Zacco koreanus (탁도 변화가 참갈겨니 (Zacco koreanus) 조직에 미치는 영향)

  • Shin, Myung-Ja;Kim, Jeong-Sook;Hwang, Yun-Hee;Lee, Jong-Eun;Seo, Eul-Won
    • Korean Journal of Ecology and Environment
    • /
    • v.41 no.1
    • /
    • pp.73-80
    • /
    • 2008
  • Present study aims to investigate the effect of muddy water on the gill and the kidney tissues of Zacco koreanus under high turbidity rearing condition. The gill of Z. koreanus showed abnormal shapes in its secondary lamellae and a rough surface with impure debris in the high level of turbidity and the longer raising period condition. In addition, the gills showed the edema, the exfoliation of epithelial cell, and the fusion of the secondary lamellae. In case of kidney tissue, the atrophied glomerulus was observed, and the empty space in Bowman's capsule was wider. The SOD activities in both gill and kidney tissues were increased in proportion to the high level of turbidity. On the while, CAT and GPX activities were shown constant level in the gill, but were increased in the kidney in the high turbid muddy water. These results indicate that the harmful radicals which generate by high level of turbidity could be removed partly by antioxidant enzymes in the kidney. The concentrations of micro heavy metal ions accumulated in the gill increased drastically at the 1,000 NTU. Based on the above results, it is considered that the exposure to the high level of turbidity for long period may affect on the structures of tissues, and change the enzymatic balance in Z. koreanus, causing the fatal disease.

Effect of Silane Coupling Agent on Adhesion Properties between Hydrophobic UV-curable Urethane Acrylate and Acrylic PSA (소수성 UV 경화형 우레탄 아크릴레이트와 아크릴 점착제 사이의 계면 부착력 향상을 위한 에폭시 실란의 영향)

  • Noh, Jieun;Byeon, Minseon;Cho, Tae Yeun;Ham, Dong Seok;Cho, Seong-Keun
    • Applied Chemistry for Engineering
    • /
    • v.31 no.2
    • /
    • pp.230-236
    • /
    • 2020
  • In this study, an adhesive tape with water and impact resistance for mobile devices was developed using a UV-curable urethane acrylate based polymer as a substrate. The substrate fabricated by UV-curable materials shows hydrophobicity and poor wettability, which significantly deteriorates the interface-adhesions between the substrate and acrylic adhesive. In order to improve the interface adhesion, 3-glycidoxy-propyl trimethoxysilane (GPTMS), a silane coupling agent having epoxy functional groups, was selected and incorporated into UV-curable urethane acrylate based polymer resins in various contents. The changes of the chemical composition according to the contents of GPTMS was studied with Fourier-transform infrared spectroscopy (FT-IR), energy-dispersive X-ray spectroscopy (EDX) and X-ray photoelectron spectroscopy (XPS) to know the surface bonding properties. Also mechanical properties of the substrate were characterized by tensile strength, gel fraction and water contact angle measurements. The peel strengths at 180° and 90° were measured to compare the adhesion between the substrate and adhesive according to the silane coupling agent contents. The mechanical strength of the urethane acrylate adhesive tape decreased as the silane coupling agent increased, but the adhesion between the substrate and adhesives increased remarkably at an appropriate content of 0.5~1 wt%.

Precise Deterioration Diagnosis and Restoration Stone Suggestion of Jungdong and Banjukdong Stone Aquariums in Gongju, Korea (공주 중동 및 반죽동 석조의 정밀 손상도 진단과 복원석재 제안)

  • Jo, Young Hoon;Lee, Myeong Seong;Choi, Gi Eun;Lee, Chan Hee
    • Korean Journal of Heritage: History & Science
    • /
    • v.44 no.3
    • /
    • pp.92-111
    • /
    • 2011
  • This study focus on the restoration stone selection of break-out part based on material characteristics analysis and the conservational safety diagnosis using various nondestructive techniques for Jungdong and Banjukdong Stone Auariums. As a result, the original rocks of the stone aquariums body are porphyritic granodiorite with magnetite-series having igneous lineation, microcline phenocryst, veinlet and basic xenolith. As a result of the provenance presumption of the host rock, a rock around Gamgokri area in Nonsan City was identified the genetically same rock. Therefore, the rock is appropriate for restoration materials of the break-out part. The deterioration assessment showed that the stone aquariums were highly serious scaling, scale off and blackening. Particularly, the front face of Banjukdong stone aquarium needs reinforcement of structural crack (760mm) caused from igneous lineation of biotite. Blackening contaminants on the stone aquariums surface occurred by combining iron oxide, manganese oxide and clay mineral. Also, major factors of efflorescence contaminants were identified as calcite (Jungdong stone aquariums) and gypsum (Banjukdong stone aquariums). The physical characteristics of stone aquariums appeared that the original and new stone is third (moderately weathered) and second grade (slightly weathered), respectively. This study sets up an integrated conservation system from material analysis to restoration stone selection and conservational safety diagnosis of Jungdong and Banjukdong stone aquariums.

Preparation and Characterization of Reduced Graphene Oxide with Carboxyl Groups-Gold Nanorod Nanocomposite with Improved Photothermal Effect (향상된 광열 효과를 갖는 카르복실화된 환원 그래핀옥사이드-골드나노막대 나노복합체의 제조 및 특성 분석)

  • Lee, Seunghwa;Kim, So Yeon
    • Applied Chemistry for Engineering
    • /
    • v.32 no.3
    • /
    • pp.312-319
    • /
    • 2021
  • Photothermal therapy is a treatment that necrotizes selectively the abnormal cells, in particular cancer cells, which are more vulnerable to heat than normal cells, using the heat generated when irradiating light. In this study, we synthesized a reduced graphene oxide with carboxyl groups (CRGO)-gold nanorod (AuNR) nanocomposite for photothermal treatment. Graphene oxide (GO) was selectively reduced and exfoliated at high temperature to synthesize CRGO, and the length of AuNR was adjusted according to the amount of AgNO3, to synthesize AuNR with a strong absorption peak at 880 nm, as an ideal photothermal agent. It was determined through FT-IR, thermogravimetric and fluorescence analyses that more carboxyl groups were conjugated with CRGO over RGO. In addition, CRGO exhibited excellent stability in aqueous solutions compared to RGO due to the presence of carboxylic acid. The CRGO-AuNR nanocomposites fabricated by electrostatic interaction have an average size of ~317 nm with a narrow size distribution. It was confirmed that under radiation with a near-infrared 880 nm laser which has an excellent tissue transmittance, the photothermal effect of CRGO-AuNR nanocomposites was greater than that of AuNR due to the synergistic effect of the two photothermal agents, CRGO and AuNR. Furthermore, the results of cancer cell toxicity by photothermal effect revealed that CRGO-AuNR nanocomposites showed superb cytotoxic properties. Therefore, the CRGO-AuNR nanocomposites are expected to be applied to the field of anticancer photothermal therapy based on their stable dispersibility and improved photothermal effect.

Petrological Characteristics and Nondestructive Deterioration Assessments for Foundation Stones of the Sebyeonggwan Hall in Tongyeong, Korea (통영 세병관 초석의 암석학적 특성 및 비파괴 손상평가)

  • Han, Doo Roo;Kim, Sung Han;Park, Seok Tae;Lee, Chan Hee
    • Economic and Environmental Geology
    • /
    • v.54 no.2
    • /
    • pp.199-212
    • /
    • 2021
  • The Sebyeonggwan Hall (National Treasure No. 305) is located on the Naval Headquarter of Three Provinces in Tongyeong, and it has partly undergone with several rebuilding, remodeling, repairing and restorations since it's the first establishment in Joseon Dynasty (AD 1605) of ancient Korea. This study focuses on 50 foundation stones that comprise the Sebyeonggwan. These stones are made of six rock types and currently have various shapes of the surface damages. As the foundation stones, the dominant rock type was dacitic lapilli tuffs, and provenance-based interpretation was performed to supply alternative stones for conservation. Most of the provenance rocks for foundation stones showed highly homogeneity with their corresponding stones of petrography, mineralogy and magnetic susceptibility. According to surface deterioration assessments, the most serious damages of the stones were blistering and scaling. The deterioration mechanism was identified through the analysis of inorganic contaminants, and the primary reason is considered salt weathering caused by sea breeze and other combined circumstances. Based on the mechanical durability of the stones, there was no foundation stone that required the replacement of its members attributed to the degradation of the rock properties, but conservation treatment is considered necessary to delay superficial damage. The foundation stones are characterized by a combined outcome of multiple petrological factors that caused physical damage to surfaces and internal defects. Therefore, it's required to diagnosis and monitoring the Sebyeonggwan regularly for long-term preservation.

Study on the Material and Deterioration Characteristics of the Stone Seated Buddha Triad and Stone Standing Buddha in Bijung-ri, Cheongju, Korea (청주 비중리 석조여래삼존상 및 석조여래입상의 재질특성과 손상특성 연구)

  • Yoo, Ji Hyun;Choie, Myoungju;Lee, Myeong Seong;Kim, Yuri
    • Journal of Conservation Science
    • /
    • v.37 no.6
    • /
    • pp.778-790
    • /
    • 2021
  • The Stone Seated Buddha Triad and Stone Standing Buddha in Bijung-ri are state-designated heritage (treasure) statues having the Buddha style of the Goryeo dynasty from the 6th century. Conservation scientific investigations were conducted to understand the preservation status of these stone Buddha statues and to establish a conservation plan. The Stone Seated Buddha Triad and Stone Standing Buddha are composed of fine-medium grained biotite granite, which is considered to be of the same origin owing to their low magnetic susceptibility distribution of less than 0.2 (×10-3 SI unit) and similar mineral characteristics. The Stone Seated Buddha Triad has highly homogenous mineral composition and particle size, whole-rock magnetic susceptibility, and geochemical characteristics very similar to those of the nearby outcrop. It was confirmed that a combination of physical, chemical, and biological factors affects the Stone Buddha statues. In particular, both the Stone Seated Buddha Triad and Stone Standing Buddha tend to be chipped off from the front and cracked and scaled from the back. The Stone Standing Buddha located outdoors experiences granularity decomposition and black algae formation, which accelerate the weathering under unfavorable conservation environments. The result of non-destructive physical property diagnosis using ultrasonic velocity showed that both the Stone Seated Buddha Triad and Stone Standing Buddha have been completely weathered (CW), indicating very poor physical properties.

A Study of Endothelium-dependent Pulmonary Arterial Relaxation and the Role of Nitric oxide on Acute Hypoxic Pulmonary Vasoconstriction in Rats (흰쥐 폐동맥의 내피세포의존성 혈관이완과 급성 저산소성 폐동맥수축에서 산화질소의 역할)

  • In, Kwang-Ho;Lee, Jin-Goo;Cho, Jae-Youn;Shim, Jae-Jung;Kang, Kyung-Ho;Yoo, Se-Hwa
    • Tuberculosis and Respiratory Diseases
    • /
    • v.41 no.3
    • /
    • pp.231-238
    • /
    • 1994
  • Backgroud: Since the demonstration of the fact that vascular relaxation by acetylcholine(Ach) results from the release of relaxing factor from the endothelium, the identity and physiology of this endothelium-derived relaxing factor(EDRF) has been the target for many researches. EDRF has been identified as nitric oxide(NO). With the recent evidences that EDRF is an important mediator of vascular tone, there have been increasing interests in defining the role of the EDRF as a potential mediator of hypoxic pulmonary vasoconstriction. But the role of EDRF in modulating the pulmonary circulation is not compeletely clarified. To investigate the endothelium-dependent pulmonary vasodilation and the role of EDRF during hypoxic pulmonary vasoconstriction, we studied the effects of $N^G$-monomethyl-L-arginine(L-NMMA) and L-arginine on the precontracted pulmonary arterial rings of the rat in normoxia and hypoxia. Mothods: The pulmonary arteries of male Sprague Dawley(300~350g) were dissected free of surrounding tissue, and cut into rings. Rings were mounted over fine rigid wires, in organ chambers filled with 20ml of Krebs solution bubbled with 95 percent oxygen and 5 percent carbon dioxide and maintained at $37^{\circ}C$. Changes in isometric tension were recorded with a force transducer(FT.03 Grass, Quincy, USA) Results: 1) Precontraction of rat pulmonry artery with intact endothelium by phenylephrine(PE, $10^{-6}M$) was relaxed completely by acetylcholine(Ach, $10^{-9}-10^{-5}M$) and sodium nitroprusside(SN, $10^{-9}-10^{-5}M$), but relaxing response by Ach in rat pulmonary artery with denuded endothelium was significantly decreased. 2) L-NMMA($10^{-4}M$) pretreatment inhibited Ach($10^{-9}-10^{-5}M$)-induced relaxation, but L-NMMA ($10^{-4}M$) had no effect on relaxation induced by SN($10^{-9}-10^{-5}M$). 3) Pretreatment of the L-arginine($10^{-4}M$) significantly reversed the inhibition of the Ach ($10^{-9}-10^{-5}M$)-induced relaxation caused by L-NMMA($10^{-4}M$) 4) Pulmonary arterial contraction by PE($10^{-6}M$) was stronger in hypoxia than normoxia but relaxing response by Ach($10^{-9}-10^{-5}M$) was decreased, 5) With pretreatment of L-arginine($10^{-4}M$), pulmonary arterial relaxation by Ach($10^{-9}-10^{-5}M$) in hypoxia was reversed to the level of relaxation in normoxia. Conclusion: It is concluded that rat pulmonary arterial relaxation by Ach is dependent on the intact endothelium and is largely mediated by NO. Acute hypoxic pulmonary vasoconstriction is related to the suppression on NO formation in the vascular endothelium.

  • PDF

Electro chemical characteristics of $(MnX)O_2$ electrode prepared by thermal decomposition method (열분해법으로 제조된 $(MnX)O_2$ 전극의 전기화학적 특성)

  • Kim, Hyun-Sik;Lee, Hae-Yon;Huh, Jeoung-Sub;Kim, Jong-Ryung;Lee, Dong-Yoon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.11a
    • /
    • pp.348-351
    • /
    • 2003
  • 산소 과전압이 낮은 $MnO_2$를 촉매로 사용하여 반도체 산화물계의 산소선택성 전극을 제조하고 산화물 coating층의 미세구조와 전기화학적 특성을 분석하였다. Ti 기판에 열분해 법을 이용하여 $MnO_2$ 피막을 형성하였고, 또한 PVDF : $MnO_2$의 함량비를 1 : 1에서 1 : 40까지 정량적으로 변화시키고 DMF의 함량을 각각의 고정된 PVDF : $MnO_2$의 함량비에서 변화시켜 Pb전극에 1.5 mm/sec의 속도로 5회 dipping하여 $MnO_2$ 피막층을 형성 하였다. $450^{\circ}C$에서 1시간 열분해하여 약 $1\;{\mu}m$$MnO_2$ 피막층이 형성되었으나 Ti 기판과의 접착력이 약하여 피막자체에 대한 전기화학적 특성을 관찰할 수 없었다. PVDF : DMF = 4 : 96인 경우 pb 전극의 피막층이 얇기 때문에 박리현상이 일어났으며 이는 산화물 용제의 낮은 점도 때문인 것으로 판단된다. 또한 PVDF : DMF = 10 : 90의 경우는 5회 dipping 하여 약 $150\;{\mu}m$의 피막층을 형성하였다. PVDF : $MnO_2$의 함량비가 1:1에서 1:6 까지는 DMF의 함량에 무관하게 전극 특성이 나타나지 않았지만 $MnO_2$의 양이 상대적으로 증가하면 cycle이 증가하더라도 거의 일정한 전류 값을 갖고 $MnO_2$와 PVDF의 비가 20:1 이상의 조성에서는 균일한 CV 특성을 나타냈다. 이는 $MnO_2$가 효과적으로 촉매 작용을 한 것으로 판단되며 anodic polarization에 의한 산소 발생 과전압도 약 1.4V 정도로 감소되었다.동등한 MSIL 코드를 생성하도록 시스템을 컴파일러 기법을 이용하여 모듈별로 구성하였다.적용하였다.n rate compared with conventional face recognition algorithms. 아니라 실내에서도 발생하고 있었다. 정량한 8개 화합물 각각과 총 휘발성 유기화합물의 스피어만 상관계수는 벤젠을 제외하고는 모두 유의하였다. 이중 톨루엔과 크실렌은 총 휘발성 유기화합물과 좋은 상관성 (톨루엔 0.76, 크실렌, 0.87)을 나타내었다. 이 연구는 톨루엔과 크실렌이 총 휘발성 유기화합물의 좋은 지표를 사용될 있고, 톨루엔, 에틸벤젠, 크실렌 등 많은 휘발성 유기화합물의 발생원은 실외뿐 아니라 실내에도 있음을 나타내고 있다.>10)의 $[^{18}F]F_2$를 얻었다. 결론: $^{18}O(p,n)^{18}F$ 핵반응을 이용하여 친전자성 방사성동위원소 $[^{18}F]F_2$를 생산하였다. 표적 챔버는 알루미늄으로 제작하였으며 본 연구에서 연구된 $[^{18}F]F_2$가스는 친핵성 치환반응으로 방사성동위원소를 도입하기 어려운 다양한 방사성의 약품개발에 유용하게 이용될 수 있을 것이다.었으나 움직임 보정 후 영상을 이용하여 비교한 경우, 결합능 변화가 선조체 영역에서 국한되어 나타나며 그 유의성이 움직임 보정 전에 비하여 낮음을 알 수 있었다. 결론: 뇌활성화 과제 수행시에 동반되는 피험자의 머리 움직임에 의하여 도파민 유리가 과대평가되었으며 이는 이 연구에서 제안한 영상정합을 이용한 움직임 보정기법에 의해서 개선되었다. 답이 없는 문제, 문제 만들기, 일반화가 가능한 문제 등으로 보고, 수학적 창의성 중 특히 확산적 사고에 초점을 맞추어 개방형 문제가 확산적 사고의 요소인 유창성, 독창성, 유연성 등에 각각 어떤 영향을 미치는지 20주의 프로그램을 개발, 진행하여 그 효과를 검증하고자

  • PDF