Web2.0의 등장과 함께 급속히 발전해온 온라인 포럼, 블로그, 트위터, 페이스북과 같은 소셜 미디어 서비스는 소비자와 소비자간의 의사소통을 넘어 이제 기업과 소비자 사이의 새로운 커뮤니케이션 매체로도 인식되고 있다. 때문에 기업뿐만 아니라 수많은 기관, 조직 등에서도 소셜미디어를 활용하여 소비자와 적극적인 의사소통을 전개하고 있으며, 나아가 소셜 미디어 콘텐츠에 담겨있는 소비자 고객들의 의견, 관심, 불만, 평판 등을 분석하고 이해하며 비즈니스에 적용하기 위해 이를 적극 분석하는 단계로 진화하고 있다. 이러한 연구의 한 분야로서 비정형 텍스트 콘텐츠와 같은 빅 데이터에서 저자의 감성이나 의견 등을 추출하는 오피니언 마이닝과 감성분석 기법이 소셜미디어 콘텐츠 분석에도 활발히 이용되고 있으며, 이미 여러 연구에서 이를 위한 방법론, 테크닉, 툴 등을 제시하고 있다. 그러나 아직 대량의 소셜미디어 데이터를 수집하여 언어처리를 거치고 의미를 해석하여 비즈니스 인사이트를 도출하는 전반의 과정을 제시한 연구가 많지 않으며, 그 결과를 의사결정자들이 쉽게 이해할 수 있는 시각화 기법으로 풀어내는 것 또한 드문 실정이다. 그러므로 본 연구에서는 소셜미디어 콘텐츠의 오피니언 마이닝을 위한 실무적인 분석방법을 제시하고 이를 통해 기업의사결정을 지원할 수 있는 시각화된 결과물을 제시하고자 하였다. 이를 위해 한국 인스턴트 식품 1위 기업의 대표 상품인 N-라면을 사례 연구의 대상으로 실제 블로그 데이터와 뉴스를 수집/분석하고 결과를 도출하였다. 또한 이런 과정에서 프리웨어 오픈 소스 R을 이용함으로써 비용부담 없이 어떤 조직에서도 적용할 수 있는 레퍼런스를 구현하였다. 그러므로 저자들은 본 연구의 분석방법과 결과물들이 식품산업뿐만 아니라 타 산업에서도 바로 적용 가능한 실용적 가이드와 참조자료가 될 것으로 기대한다.
소셜네트워크서비스(SNS)의 성장과 함께 다양한 형태의 SNS가 등장했다. 상호작용성, 정보 교류, 엔터테인먼트 등 다양한 이용 동기를 바탕으로 SNS 이용자 또한 빠르게 증가하는 추세이다. 그중 페이스북은 대표하는 SNS 채널로서 기업에서도 페이스북 페이지를 활용해 홍보 채널로 활용하기 시작했다. 이를 위해 운영 초기, 기업은 팬 수 확보에 나섰고 그 결과 최근 기업 페이스북 팬 수는 많게는 수백만에 이를 정도로 늘어났다. 기업의 목표는 팬 수 확보를 넘어 콘텐츠를 통해 고객에게 기업 브랜드 이미지를 재고하고, 나아가 소통하는 수단으로 활용하고 있다. 이를 평가하는 주요 수치가 바로 본 연구의 종속변수에 해당하는 페이스북의 '좋아요', '댓글', '공유', '클릭 수' 등이다. 해당 수치 달성을 위해 콘텐츠 제작에 대한 고민이 선행되어야 하는데, 본 연구에서는 콘텐츠 제작 고려 사항을 3가지로 나눠 독립변수를 구성하였다. 콘텐츠 소재, 콘텐츠 구조, 메시지 스타일 등이 페이스북의 이용자 행동에 미치는 영향을 회귀분석을 이용해 분석하였다. 종속변수의 경우, 콘텐츠상에 모든 이용자의 행동 '전체 클릭 수'로 설정하였다. 본 연구에서는 각 독립 변수를 기존 연구 문헌을 통해 정의하고, 종속변수에 미치는 영향을 분석하였는데, '전체 클릭 수'의 경우, '자사연관', '실생활 관여도', '격식 x 관여도' 등의 변수가 유의미한 영향을 갖는 것으로 나타났다. 연구 결과를 통해, 콘텐츠 목적에 따른 최적화된 콘텐츠 전략을 제시함으로써, 기업 페이스북 운영자와 콘텐츠 제작자의 운영, 제작 전략에 기여할 수 있을 것으로 보인다.
최근 딥러닝 기술이 주목을 받고 있다. 대중들의 관심을 받았던 국제 이미지 인식 기술 대회(ILSVR)와 알파고(AlphaGo)에서 사용된 딥러닝 기술이 바로 합성곱 신경망(CNN; Convolution Neural Network)이다. 합성곱 신경망은 입력 이미지를 작은 구역으로 나누어 부분적인 특징을 인식하고 이것을 결합하여 전체를 인식하는 특징을 가진다. 이러한 딥러닝 기술이 우리의 생활에 있어 많은 변화를 야기할 것이라는 기대를 주고 있지만 현재까지는 이미지 인식과 자연어 처리 등에 그 성과가 국한되어 있다. 비즈니스 문제에 대한 딥러닝 활용은 아직까지 초기 연구 단계로 향후 마케팅 응답 예측이나 허위 거래 식별, 부도 예측과 같은 전통적 비즈니스 문제들에 대해 보다 깊게 활용되고 그 성능이 입증된다면 딥러닝 기술의 활용 가치가 보다 더 주목받게 될 것으로 기대된다. 이러한 때 비교적 고객 식별이 용이하고 활용 가치가 높은 빅데이터를 보유하고 있는 전자상거래 기업의 사례를 바탕으로 하여 딥러닝 기술의 비즈니스 문제 해결 가능성을 진단해보는 것은 학술적으로 매우 의미 있는 시도라 할 수 있겠다. 이에 본 연구에서는 전자상거래 기업의 고객 행태 예측력을 높이기 위한 방안으로 합성곱 신경망을 활용한 '이종 정보 결합(Heterogeneous Information Integration)의 CNN 모델'을 제시한다. 이는 정형과 비정형 정보를 결합하여 다층 퍼셉트론 구조의 합성곱 신경망에서 학습시키는 모델로서 최적의 성능을 발휘하도록 '이종 정보 결합'과 '비정형 정보의 벡터 전환', 그리고 '다층 퍼셉트론 설계'로 하는 3개의 내부 아키텍처를 정의하고 각 아키텍처 단위로 구성되는 방식에 따른 성능을 평가하여 그 결과를 바탕으로 제안 모델을 확정하고 그 성능을 평가해보고자 한다. 고객 행태 예측을 위한 목표 변수는 전자상거래 기업에서 중요하게 관리하고 있는 재구매 고객, 이탈 고객, 고빈도 구매 고객, 고빈도 반품 고객, 고단가 구매 고객, 고할인 구매 고객 등 모두 6개의 이진 분류 문제로 정의한다. 제안한 모델의 유용성을 검증하기 위해서 국내 특정 전자상거래 기업의 실제 데이터를 활용하여 실험을 수행하였다. 실험 결과 정형과 비정형 정보를 결합하여 CNN을 활용한 제안 모델이 NBC(Naïve Bayes classification)과 SVM(Support vector machine), 그리고 ANN(Artificial neural network)에 비해서 예측 정확도와 F1 Measure가 높게 평가되었다. 또 NBC, SVM, ANN에서 정형 정보만을 사용할 때 보다 정형과 비정형 정보를 결합하여 입력 변수로 함께 활용한 경우에 예측 정확도가 향상되는 것으로 나타났다. 따라서 실험 결과로부터 비정형 정보의 활용이 고객 행태 예측의 정확도 향상에 기여한다는 점과 CNN 기법의 특징 추출 알고리즘이 VOC에 사용된 단어들의 분포와 위치 정보를 해석하여 문장의 의미를 파악하는데 효과적이라는 점을 실증적으로 확인하였다는데 그 의미가 있다고 할 수 있겠다. 이를 통해서 CNN 기법이 지금까지 소개된 이미지 인식이나 자연어 처리 분야 외에 비즈니스 문제 해결에도 활용 가치가 높다는 점을 확인하였다는데 이 연구의 의의가 있다 하겠다.
다양한 스마트 기기 및 관련 서비스의 증가에 따라 텍스트 데이터가 폭발적으로 증가하고 있으며, 이로 인해 방대한 문서로부터 필요한 정보만을 추려내는 작업은 더욱 어려워졌다. 따라서 텍스트 데이터로부터 핵심 내용을 자동으로 요약하여 제공할 수 있는 텍스트 자동 요약 기술이 최근 더욱 주목을 받고 있다. 텍스트 요약 기술은 뉴스 요약 서비스, 개인정보 약관 요약 서비스 등을 통해 현업에서도 이미 활발하게 적용되고 있으며, 학계에서도 문서의 주요 요소를 선별하여 제공하는 추출(Extraction) 접근법과 문서의 요소를 발췌한 뒤 이를 조합하여 새로운 문장을 구성하는 생성(Abstraction) 접근법에 따라 많은 연구가 이루어지고 있다. 하지만 문서의 자동 요약 기술에 비해, 자동으로 요약된 문서의 품질을 평가하는 기술은 상대적으로 많은 진전을 이루지 못하였다. 요약문의 품질 평가를 다룬 기존의 대부분의 연구들은 사람이 수작업으로 요약문을 작성하여 이를 기준 문서(Reference Document)로 삼고, 자동 요약문과 기준 문서와의 유사도를 측정하는 방식으로 수행되었다. 하지만 이러한 방식은 기준 문서의 작성 과정에 막대한 시간과 비용이 소요될 뿐 아니라 요약자의 주관에 의해 평가 결과가 다르게 나타날 수 있다는 한계를 갖는다. 한편 이러한 한계를 극복하기 위한 연구도 일부 수행되었는데, 대표적으로 전문에 대해 차원 축소를 수행하고 이렇게 축소된 전문과 자동 요약문의 유사도를 측정하는 기법이 최근 고안된 바 있다. 이 방식은 원문에서 출현 빈도가 높은 어휘가 요약문에 많이 나타날수록 해당 요약문의 품질이 우수한 것으로 평가하게 된다. 하지만 요약이란 본질적으로 많은 내용을 줄여서 표현하면서도 내용의 누락을 최소화하는 것을 의미하므로, 단순히 빈도수에 기반한 "좋은 요약"이 항상 본질적 의미에서의 "좋은 요약"을 의미한다고 보는 것은 무리가 있다. 요약문 품질 평가의 이러한 기존 연구의 한계를 극복하기 위해, 본 연구에서는 요약의 본질에 기반한 자동 품질 평가 방안을 제안한다. 구체적으로 요약문의 문장 중 서로 중복되는 내용이 얼마나 적은지를 나타내는 요소로 간결성(Succinctness) 개념을 정의하고, 원문의 내용 중 요약문에 포함되지 않은 내용이 얼마나 적은지를 나타내는 요소로 완전성(Completeness)을 정의한다. 본 연구에서는 간결성과 완전성의 개념을 적용한 요약문 품질 자동 평가 방법론을 제안하고, 이를 TripAdvisor 사이트 호텔 리뷰의 요약 및 평가에 적용한 실험 결과를 소개한다.
임플랜트 치료가 보편화되고, 다양한 형태와 재료의 상부 구조물이 보급되었다. 그리고 실패에 대한 보고도 다양하며, 그 중 지대나사의 풀림현상이 가장 흔하다고 지적되고 있다. 본 연구는 외부연결구조와 내부연결구조 임플랜트에 의해 지지되는 상부 구조물을 나사로 연결할 때, 세 가지 나사조임순서와 두 가지 나사조임방법에 따른 나사의 풀림 토크값을 비교하여 나사조임순서와 나사조임방법이 서로 다른 연결구조에 따라 나사풀림현상에 미치는 영향을 알아보고자 하였다. 완전 무치악 하악모형을 자가중합형 아크릴릭 레진으로 제작하고 이공간 부위에 중심간 거리가 약 15 mm 되도록 네 개의 임플랜트 고정체 유사체를 고정한 후 바 타입으로 납형 형성하여 상부 구조물을 주조 제작하였다. 상부 구조물과 정확한 적합이 되는 주모형을 제작한 후 연결 인상법으로 외부연결구조, 내부연결구조를 가지는 연구모형을 각각 5개씩 제작하였다. 각 모형에서 각 나사의 풀림 토크값을 가장 왼쪽에 조여지는 나사를 1번 나사로 하고 가장 오른쪽의 나사를 4번 나사로 명명하였다. 먼저, 나사조임순서의 영향을 알아보기 위해 1-2-3-4, 2-3-1-4, 2-4-3-1의 순서로 15 Ncm의 힘으로 조이고, 다시 같은 순서로 최종 조임토크값인 30 Ncm까지 조인 후 (2-step 방법) 각 나사의 풀림 토크값을 측정하였다. 또한 나사조임방법의 영향을 알아보기 위해 2-3-1-4의 순서로 한 번에 최종 조임토크값인 30 Ncm까지 조인 후 (1-step 방법) 각 나사의 풀림 토크값을 측정하여 같은 순서 (2-3-1-4)의 2-step 방법과 비교하였다. 세 가지 나사조임순서에 따른 나사의 풀림 토크값은 외부연결구조에서 2-3-1-4군이 2-4-3-1군보다 유의하게 낮았다 (p<0.05). 그리고 내부연결구조에서도 2-3-1-4군이 2-4-3-1군과 1-2-3-4군보다 유의하게 낮았다 (p<0.05). 또한 나사조임순서와 무관하게 몇 번째 조여진 나사인지에 따른 풀림 토크값을 비교해 본 결과, 외부연결구조에서는 처음에 조여진 나사가 두 번째 조여진 나사보다 유의하게 높았으나 (p<0.05), 내부연결구조에서는 처음에 조여진 나사에서부터 마지막에 조여진 나사 간에 차이가 없었다. 그리고 두 가지 나사조임방법 간에는 외부연결구조와 내부연결구조 모두에서 통계학적으로 유의한 차이가 없었다. 연결구조에 대한 비교에서 외부연결구조와 내부연결구조의 풀림 토크값은 각각 16.27 Ncm, 14.25 Ncm 였으며, 통계적으로 유의한 차이가 나타났다 (p<0.05). 다수 임플랜트에 의해 지지되는 상부 구조물을 나사로 연결할 때, 나사조임순서에 따라 차이가 있었으며, 가운데부터 조인 경우에서 풀림 토크값이 낮았고, 연결구조 간에도 차이가 있었다. 풀림 토크값에 미치는 요인에 대해 좀 더 상세히 분석할 필요가 있으며, 하중 조건에서의 부가적인 연구가 필요할 것으로 사료된다.
제4차 산업혁명의 도래로 IT(information technology)를 활용한 다양한 융합기술에 대한 관심이 높아지고 있으며, 이에 따른 고품질의 IT관련 교육서비스 제공의 필요성 및 중요성 또한 점차 증대되고 있다. 한편, 일반적인 교육서비스 품질 및 만족도에 관한 연구는 그 동안 다양한 맥락에서 활발히 진행된 바 있으나, IT교육 참가자를 대상으로 한 IT교육 서비스품질의 역할을 살펴본 연구는 상대적으로 부족한 것으로 파악된다. 이에 본 연구에서는 SERVPERF 모형 및 관련 선행연구를 바탕으로 IT교육 맥락에서 IT교육 서비스품질의 다섯 가지 차원(유형성, 신뢰성, 반응성, 확신성 및 공감성)을 도출하고, 이러한 세부 IT교육 서비스품질 요인이 학습자의 교육만족도, 나아가 현업적용의도 및 추천의도에 미치는 영향을 검증하였다. 또한, 이러한 영향이 학습자 직위(실무자 집단/관리자 집단) 및 참여동기(자발적 참여집단/비자발적 참여집단)에 따라 어떻게 달라지는지에 대한 추가분석도 실시하였다. 서울 소재 'M'교육기관 203명의 IT교육 참가자 대상 설문을 활용한 구조방정식모형 분석 결과, IT교육 서비스품질의 다섯 가지 차원 가운데 유형성, 신뢰성 및 확신성이 교육만족도에 유의한 영향을 주는 것으로 나타났으며, 이러한 교육만족도는 현업적용의도와 추천의도에도 유의한 영향을 주는 것으로 조사되었다. 또한, IT교육 서비스품질이 교육만족도에 미치는 영향 관계에서 학습자 직위 및 참여동기가 유의한 조절효과를 가진다는 사실을 확인하였다. 본 연구는 SERVPERF 모형을 활용하여 IT교육 맥락에서 IT교육 서비스품질의 영향력을 실증한 최초의 연구라는 점에서 학술적 의의가 있다. 본 연구결과가 IT교육 서비스 제공기관의 교육만족도 제고 및 효율적인 서비스 운영을 위한 실질적인 지침을 제공해 줄 수 있을 것으로 기대한다.
인터넷의 발달과 SNS의 등장으로 정보흐름의 방식이 크게 바뀌었다. 이러한 변화에 따라 소셜 미디어가 급부상하고 있으며 소셜 미디어와 비디오 콘텐츠가 융합된 소셜 TV, 소셜 뉴스의 중요성이 강조되고 있다. 이러한 환경 속에서 사용자들은 단순히 콘텐츠를 탐색만 하는 것이 아니라 같은 콘텐츠를 이용하고 있는 친구들이나 지인들과 콘텐츠에 대한 정보나 경험들을 공유하고 더 나아가 새로운 콘텐츠를 만들어내기도 한다. 하지만 기존의 소셜 뉴스에서는 이러한 사용자들의 특성을 반영해 주지 못하고 있다. 특히 이용자들의 참여성만을 고려하고 있어서 서비스간의 차별화가 어렵고 뉴스 콘텐츠에 대한 정보나 경험 공유 시 컨텍스트 공유가 어렵다는 문제가 있다. 이를 해결하기 위해 본 논문에서는 뉴스를 내용별로 분할하고 분할된 뉴스에서 추출된 시간 종속적인 메타데이터를 제공하는 프레임워크를 제안한다. 제안하는 프레임워크에서는 스토리 분할 방법을 이용하여 뉴스 대본을 내용별로 분할한다. 또한 뉴스 전체내용을 대표하는 태그, 분할된 뉴스를 나타내는 서브 태그, 분할된 뉴스가 비디오에서 시작하는 위치 즉, 시간 종속적인 메타데이터를 제공한다. 소셜 뉴스 이용자들에게 시간 종속적인 메타데이터를 제공한다면 이용자들은 전체의 뉴스 내용 중에 자신이 원하는 부분만을 탐색 할 수 있으며 이 부분에 대한 견해를 남길 수 있다. 그리고 뉴스의 전달이나 의견 공유 시 메타데이터를 함께 전달함으로써 전달하고자 하는 내용에 바로 접근이 가능하며 프레임워크의 성능은 추출된 서브 태그가 뉴스의 실제 내용을 얼마나 잘 나타내 주느냐에 따라 결정된다. 그리고 서브 태그는 스토리 분할의 정확성과 서브 태그를 추출하는 방법에 따라 다르게 추출된다. 이 점을 고려하여 의미적 유사도 기반의 스토리 분할 방법을 프레임워크에 적용하였고 벤치마크 알고리즘과 성능 비교 실험을 수행하였으며 분할된 뉴스에서 추출된 서브 태그들과 실제 뉴스의 내용을 비교하여 서브 태그들의 정확도를 분석하였다. 결과적으로 의미적 유사도를 고려한 스토리 분할 방법이 더 우수한 성능을 보였으며 추출된 서브 태그들도 컨텍스트와 관련된 단어들이 추출 되었다.
골유착 개념에 기반한 치과용 임플랜트가 $Br{\aa}nemark$ 등에 의해 도입된 이후로 치과 치료에서 임플랜트를 이용한 방법은 장기적으로 높은 성공률을 보여 왔다. 임플랜트를 이용한 치료법이 상실된 치아의 수복을 위해 우선적으로 고려되어야 할 중요한 방법으로 인식되면서 임플랜트를 이용한 방법을 선호하게 되었고 적용 범위 및 사용 빈도도 급증하였다. 예전에 비해서 국산 임플랜트의 사용도 증가하였으나 장기간의 임상적, 객관적인 자료를 가진 국산 임플랜트의 수는 많지 않은 상태이다. 본 연구는 SLA 표면 처리 및 외측 연결형의 국산 임플랜트에 관하여 18개월에서부터 57개월까지의 임상적, 방사선학적 결과에 대한 후향적 분석을 실시하였다. 연세대학교 치과대학병원에서 네오플란트$^{(R)}$ 임플랜트 (네오바이오텍, 서울, 한국)를 이용하여 치료받은 25명의 환자에게 식립된 96개의 임플랜트를 대상으로 하였고, 대상자 중 남성의 평균 연령은 63.5세, 여성의 평균 연령은 44.3세였다. 진료기록부를 통해 성별, 연령, 무치악 유형, 식립 위치, 식립된 임플랜트의 직경 및 길이, 2차 수술 여부, 보철물의 유형, 대합치의 유형, 임상적 합병증의 종류 및 빈도 등을 조사하여 그에 따른 분포 및 생존율의 차이와 함께 이들 항목이 변연골 흡수량에 미치는 영향을 조사하여 다음과 같은 결과를 얻었다. 1. 총 25명에게 식립된 96개의 임플랜트 중 2개가 실패하여 누적 생존율은 97.9%로 나타났다. 2. 정기검진이 가능했던 88개의 임플랜트에 대해서는 상악에서의 생존율이 96.2%, 하악에서의 생존율은 98.4%였고, 구치부에서의 생존율은 97.5%였으며 전치부에서의 생존율은 100%였다. 3. 보철물 장착 후 1년과 1년 이후의 연간 흡수량에서 남성이 여성보다 변연골 흡수량이 많았다 (P<0.05). 4. 임플랜트 지지 보철물 후방에 자연치가 존재하는 경우가 존재하지 않는 경우보다 보철물 장착 후 첫 1년과 1년 이후 모두에서 연간 흡수량이 적었다 (P<0.05). 5. 보철물 장착 1년 이후의 연간 흡수량은 전치보다 구치에서 더 많은 변연골 흡수를 보였다 (P<0.05). 6. 악궁 간, 보철물의 유형, 대합치의 유형, 2차 수술 여부에 따른 변연골 흡수량의 차이는 보이지 않았다 (P>0.05). 이상의 결과를 토대로 변연골 흡수량에 영향을 주는 요소로 성별, 무치악의 유형, 악궁 내 위치였으며, 악궁 간, 보철물의 유형, 대합치의 유형, 2차 수술 여부에 따른 변연골 흡수량 차이는 없었다. 본 연구에서 최대 57개월까지의 기간 동안 SLA 표면 처리 및 외측 연결형의 국산 임플랜트의 임상적인 성공률은 만족스러운 결과를 보였으며 변연골 흡수량도 임플랜트 성공기준에 부합하였으나, 이보다 더 장기적인 평가가 필요하며 다양한 국산 임플랜트 시스템에 대한 중장기적인 연구가 지속되어야 할 것이다.
어떤 클래스에 속한 레코드의 개수가 다른 클래스들에 속한 레코드의 개수보다 매우 많은 경우에, 이 데이터 집합을 '불균형 데이터 집합'이라고 한다. 데이터 분류에 사용되는 많은 기법들은 이러한 불균형 데이터에 대해서 저조한 성능을 보인다. 어떤 기법의 성능을 평가할 때에 적중률뿐만 아니라, 민감도와 특이도도 함께 측정하여야 한다. 고객의 이탈을 예측하는 문제에서 '유지' 레코드가 다수 클래스를 차지하고, '이탈' 레코드는 소수 클래스를 차지한다. 민감도는 실제로 '유지'인 레코드를 '유지'로 예측하는 비율이고, 특이도는 실제로 '이탈'인 레코드를 '이탈'로 예측하는 비율이다. 많은 데이터 마이닝 기법들이 불균형 데이터에 대해서 저조한 성능을 보이는 것은 바로 소수 클래스의 적중률인 특이도가 낮기 때문이다. 불균형 데이터 집합에 대처하는 과거 연구 중에는 소수 클래스를 Oversampling하여 균형 데이터 집합을 생성한 후에 데이터 마이닝 기법을 적용한 연구들이 있다. 이렇게 균형 데이터 집합을 생성하여 예측을 수행하면, 특이도는 다소 향상시킬 수 있으나 그 대신 민감도가 하락하게 된다. 본 연구에서는 민감도는 유지하면서 특이도를 향상시키는 모델을 개발하였다. 개발된 모델은 Support Vector Machine (SVM), 인공신경망(ANN) 그리고 의사결정나무 기법 등으로 구성된 하이브리드 모델로서, Hybrid SVM Model이라고 명명하였다. 구축과정 및 예측과정은 다음과 같다. 원래의 불균형 데이터 집합으로 SVM_I Model과 ANN_I Model을 구축한다. 불균형 데이터 집합으로부터 Oversampling을 하여 균형 데이터 집합을 생성하고, 이것으로 SVM_B Model을 구축한다. SVM_I Model은 민감도에서 우수하고, SVM_B Model은 특이도에서 우수하다. 입력 레코드에 대해서 SVM_I와 SVM_B가 동일한 예측치를 도출하면 그것을 최종 해로 결정한다. SVM_I와 SVM_B가 상이한 예측치를 도출한 레코드에 대해서는 ANN과 의사결정나무의 도움으로 판별 과정을 거쳐서 최종 해를 결정한다. 상이한 예측치를 도출한 레코드에 대해서는, ANN_I의 출력값을 입력속성으로, 실제 이탈 여부를 목표 속성으로 설정하여 의사결정나무 모델을 구축한다. 그 결과 다음과 같은 2개의 판별규칙을 얻었다. 'IF ANN_I output value < 0.285, THEN Final Solution = Retention' 그리고 'IF ANN_I output value ${\geq}0.285$, THEN Final Solution = Churn'이다. 제시되어 있는 규칙의 Threshold 값인 0.285는 본 연구에서 사용한 데이터에 최적화되어 도출된 값이다. 본 연구에서 제시하는 것은 Hybrid SVM Model의 구조이지 특정한 Threshold 값이 아니기 때문에 이 Threshold 값은 대상 데이터에 따라서 얼마든지 변할 수 있다. Hybrid SVM Model의 성능을 UCI Machine Learning Repository에서 제공하는 Churn 데이터 집합을 사용하여 평가하였다. Hybrid SVM Model의 적중률은 91.08%로서 SVM_I Model이나 SVM_B Model의 적중률보다 높았다. Hybrid SVM Model의 민감도는 95.02%이었고, 특이도는 69.24%이었다. SVM_I Model의 민감도는 94.65%이었고, SVM_B Model의 특이도는 67.00%이었다. 그러므로 본 연구에서 개발한 Hybrid SVM Model이 SVM_I Model의 민감도 수준은 유지하면서 SVM_B Model의 특이도보다는 향상된 성능을 보였다.
문화재의 국제적인 유통행위는 다수 국가가 관계되므로 이 문제 해결을 위해서는 국제법적인 접근이 필수적이다. 2차대전 이후 문화재의 가치가 물질적 가치에서 국가와 민족의 정체성 확립을 위한 정신적 민족적인 측면의 가치가 중시되면서 신생 독립국과 식민제국들 간에 문화재의 소유권 다툼이 쟁점화 되어 문화재 반환을 목적으로 하는 국제적인 협력과 법제도적인 장치의 모색이 필요하게 되었다. 문화재의 불법거래에 관한 국제협약으로 유네스코(UNESCO)를 중심으로 문화재의 준비적 보존의무를 부과하는 1954년 "전시 문화재 보호에 관한 협약", 문화재 반 출입에 대한 통제와 반출에 허가장 발급을 통해 불법 취득 유통 억제를 위한 1970년 "문화재불법 반 출입 및 소유권 양도의 금지와 예방수단에 관한 협약", 도난이나 불법적으로 반출된 문화재의 국제적 반환을 의무화한 1995년 "유니드로와 협약"이 있다. 또한 유엔(UN)의 산하 기관으로 유네스코(UNESCO)는 특히 소위 문화재 분과(the Division of Cultural Heritage)를 마련하여 문화재에 대한 관계업무 처리에 주력하여 오고 있으며, UN 총회 역시 1973년의 결의 3187 이후로 문화재 보호에 관하여 계속적인 관심을 표현하여 오고 있는데 그 기본내용은 문화재의 원산국에로의 반환에 관한 국제 협력을 확인하고, 각국에 예술품 및 문화재의 불법거래 금지 및 방지를 위한 적절한 조처를 권고하며, 자국내 문화재에 대한 목록화 작업을 권고함과 아울러 종국적으로 많은 국가가 유네스코(UNESCO) 협약의 당사국이 되어 국제적인 협력체제의 구성원이 될 것을 권장하는 것이다. 국제협약의 한계로 협약상의 문화재에 대한 정의 차이가 존재한다. 먼저 1954년 협약상의 문화재는 동산에만 국한되는 것이 아니라 부동산도 포함하고 있는데 1970년 협약은 그 제정 목적이 '문화재의 불법적인 반 출입 및 소유권 양도의 금지와 방지수단'의 강구에 있으며 따라서 그 규율대상도 원칙적으로 유형의 동산문화재(tangible movable cultural property)에 국한된다고 봐야할 것이다. 1995년 협약도 역시 동산문화재를 규율대상으로 삼고 있다. 이 두 협약은 이 점에서 1954년 협약이나 주로 부동산적인 특성을 갖는 문화유산 및 자연유산을 대상으로 하는 1972년의 협약과 차이를 보이고 있다. 이러한 차이는 문화재의 개념에 대한 내재적인 차이를 반영하는 것이 아니라 주어진 협약의 제정 목적 및 취지가 다름에서 기인하는 것이다. 우리나라의 경우 1866년의 병인양요, 일본에 의한 36년간의 식민통치, 군정기, 경제 개발기 등을 통하여 다수의 문화재가 해외로 유출되었다. 물론 이들 문화재를 전부 반환 받을 수도 없고 또 받을 필요도 없는 것이지만, 이들 중 일부는 한국 사회의 문화적 역사적 정체성의 형성에 중요한 역할을 한다거나 또는 이들의 외국(특히, 일본)에서의 소재가 과거 한국민에 대한 지배의 상징으로서 기능한다거나 할 경우 반환 문제가 제기될 수 있을 것이다. 이러한 경우에 우리의 입론을 강화하기 위해서는 1954년 협약 및 제1의정서의 비준은 적극적으로 고려해야 한다고 판단된다. 반환을 요구할 경우 우선 문화재의 도난 여부가 핵심이며 이 경우 국제협약에 따라 조치하면 될 것이지만 외교적 협상의 단계에 이르면 이 문제는 정치적 문제가 될 것이다. 이 경우 반환을 요구하는 국가는 상대국이 문화재를 반환하도록 유도해야 한다. 문화재의 불법거래 방지에 대한 절실한 필요성에 반해, 동북아 지역 국가 및 시민사회의 방지노력은 대단히 미흡한 실정인 바, 이를 실현하기 위한 국가 및 시민 사회적 차원의 체계적인 노력이 동아시아 지역 전체에서 활발하게 전개하여야 할 것이다. 문화재의 불법적인 거래를 가장 효과적으로 막을 수 있는 방법은 인터폴(Interpol) 회원국간 정보를 신속히 유통시키는 것인데 이를 위해서는 인터넷 기술에 바탕을 둔 통신 시스템을 개발해야 하며 도난당한 문화재의 불법거래를 방지하기 위한 보다 효율적인 방안으로 문화재 보호 법률의 도입, 국제협약의 가입, 수집품 목록 구축 등의 조치가 필요하다고 본다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.