• Title/Summary/Keyword: 바이오 매스

Search Result 976, Processing Time 0.022 seconds

수산 바이오매스 자원화 전략 액션플랜의 책정

  • Hu, To-Wa
    • 어항어장
    • /
    • s.80
    • /
    • pp.34-37
    • /
    • 2007
  • 바이오매스 이용.활용 사업은 수산업. 어촌의 활성화를 목적에 두고 있으므로 경제성이 우수해야하는 것이 필수 조건이지만, 한편 지구 온난화 방지나 순환형 사회구축이라는 목적을 가지고 있어 경제성뿐만 아니라 탄소 고정 등 한경에 공헌하는가도 평가의 대상으로 검토하는 것이 바람직하다.

  • PDF

바이오매스의 초임계수 가스화

  • Lee, In-Gu
    • Journal of the KSME
    • /
    • v.55 no.7
    • /
    • pp.37-41
    • /
    • 2015
  • 이 글에서는 초임계 유체 이용기술의 일환으로서 바이오매스의 초임계수 가스화 기술을 소개하였다. 초임계수 가스화 기술의 원리와 특징, 가스화 반응조건, 그리고 기술개발 현황을 정리한 다음, 향후 이 기술의 상용화를 위하여 극복해야 할 과제를 제시하였다.

  • PDF

Biomass Energy in the USA: A Literature Review (III) - Bioethanol production from Biomass and Feedstock Supply - (미국 에너지 시장에 공급되는 바이오에너지에 관한 연구 (III) - 바이오매스를 이용한 에탄올 생산과 원료공급에 대하여 -)

  • Kim, Yeong-Suk;Gorman, Thomas
    • Journal of the Korean Wood Science and Technology
    • /
    • v.35 no.1
    • /
    • pp.1-10
    • /
    • 2007
  • This study was reviewed on the bioethanol production from biomass resources and feedstock supply in America. U.S. Department of Energy (USDE) and the u.s. Department of Agriculture USDA) are both strongly committed to expand the role of biomass as an energy source. They support biomass fuels and products as a way to reduce the need for oil and gas imports, to strengthen the nation's energy security and environmental quality. And it was envisioned a 20 percent replacement of the current U.S.transportation fuel consumption in 2030. Also it was reviewed policies to encourage the expanding of Bio-based fuel use to replace gasoline, such as Clean Air Act, Federal Clean Fuel Program and American Jobs Creation Act. In feedstock supply it was assumed forest biomass will be supplied in 368 million dry tons yearly and the agriculture derived biomass adopted by new technologies and land use change will be supplied in 998 million dry tons, including highly 818 million dry tons of lignocellulosic biomass such as perenial crops (hybrid trees, grasses) corn stover, other crop residues. This amount is 5 times to the amount from based current agricultural technology and crop land.

The Development of Biomass Model for Pinus densiflora in Chungnam Region Using Random Effect (임의효과를 이용한 충남지역 소나무림의 바이오매스 모형 개발)

  • Pyo, Jungkee;Son, Yeong Mo
    • Journal of Korean Society of Forest Science
    • /
    • v.106 no.2
    • /
    • pp.213-218
    • /
    • 2017
  • The purpose of this study was to develop age-biomass model in Chungnam region containing random effect. To develop the biomass model by species and tree component, data for Pinus densiflora in central region is collected to 30 plots (150 trees). The mixed model were used to fixed effect in the age-biomass relation for Pinus densiflora, with random effect representing correlation of survey area were obtained. To verify the evaluation of the model for random effect, the akaike information criterion (abbreviated as, AIC) was used to calculate the variance-covariance matrix, and residual of repeated data. The estimated variance-covariance matrix, and residual were -1.0022, 0.6240, respectively. The model with random effect (AIC=377.2) has low AIC value, comparison with other study relating to random effects. It is for this reason that random effect associated with categorical data were used in the data fitting process, the model can be calibrated to fit the Chungnam region by obtaining measurements. Therefore, the results of this study could be useful method for developing biomass model using random effects by region.

Development of a Methanol Absorption System for the Removal of $H_2S$, COS, $CO_2$ in Syngas from Biomass Gasifier (바이오매스 가스화 내의 $H_2S$, COS, $CO_2$ 복합 제거를 위한 메탄올 흡수탑 개발)

  • Eom, Won Hyun;Kim, Jae Ho;Lee, See Hoon
    • Applied Chemistry for Engineering
    • /
    • v.23 no.1
    • /
    • pp.23-27
    • /
    • 2012
  • To make synthetic liquid fuel from biomass such as wood pellet, energy crop and so on, a biomass to liquid (BTL) process by using a biomass gasifier with Fisher-Tropsch (FT) reaction was developed. However $H_2S$, COS and $CO_2$ in syngas from biomass gasifiers resulted in a decrease of the conversion efficiency and the deactivation of the catalyst. To remove acid gases in syngas, a lab-scale methanol absorption tower was developed and the removal characteristics of acid gases were investigated. The methanol absorption tower efficiently removed $H_2S$ and COS with a removal of $CO_2$, so it could be useful process for the BTL process.

Study on a Carbon Dioxide Gasification for Wood Biomass using a Continuous Gasifier (연속식 가스화로를 이용한 목질계 바이오매스 이산화탄소 가스화 연구)

  • Park, Min Sung;Chang, Yu Woon;Jang, Yu Kyung;Chun, Young Nam
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.36 no.10
    • /
    • pp.704-710
    • /
    • 2014
  • Biomass is considered an alternative energy which can solve an greenhouse gas problem like $CO_2$ which is a major contributor to global warming. The biomass can be converted to various energy sources through thermochemical conversion. In this study, a continuous gasifier was engineered for a wood biomass gasification. The biomass was used a waste wood. The experiments of $CO_2$ gasification were achieved as the gasification temperature, moisture content and input $CO_2$ concentration. The results showed that the yield of producer gas increased with an increasing the gasification temperature. The amount of the light tar increased due to the decomposition of gravimetric tar by the thermal cracking, and the char was confirmed pore development through the SEM analysis. The CO concentration was increased with an increased input $CO_2$ concentration from Boudouard reaction. Through the parametric screening studies, the hydrogen and carbon monoxide concentration were 32.91% and 48.33% at the optimal conditions of this test rig.

Protect Blue Carbon Biomass Habitat and Create a Carbon Reducing Coastal City (블루카본 바이오매스 서식지를 중심으로 한 탄소저감형 해안도시 조성의 필요성)

  • Sun-Ah Hwang
    • Journal of Navigation and Port Research
    • /
    • v.47 no.3
    • /
    • pp.134-146
    • /
    • 2023
  • The issue of 'carbon reduction' can be said to be one of the most important issues worldwide. For efficient carbon reduction, it is necessary to consider ways to increase absorption and reduce emissions. Accordingly, much attention has been paid to increasing carbon absorption using blue carbon biomass. Blue carbon biomass refers to an ecosystem related to blue carbon, which has a higher carbon absorption rate than inland ecosystems and a longer collection period. It is very efficient in reducing carbon. Therefore, in this study, a current status survey was conducted on domestic and foreign policies, studies, and plans related to the preservation of blue carbon biomass habitats. Basic research was conducted to prepare plans for future preservation of blue carbon biomass habitats suitable for the domestic environment.

Characteristics of Syngas Refinery via Rice Husk Gasification in the Updraft Fixed-bed Gasification System (Updraft 고정층 가스화 시스템에서의 왕겨 가스화 합성가스 정제특성)

  • Yoon, Youngsik;Sung, Hojin;Park, Sunam;Gu, Jaehoi
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.171.2-171.2
    • /
    • 2011
  • 지속가능한 발전과 저탄소 녹색성장의 개념이 대두되면서 우리나라를 비롯한 주요 선진국은 자국의 화석연료 의존도를 낮추고 대체에너지로 환경친화적이며, 청정에너지로 각광받는 신 재생에너지의 활용에 경제적, 정책적 지원을 아끼지 않고 있는 실정이다. 실제로 유럽에서는 바이오매스의 일종인 우드칩을 활용한 가정용 보일러가 보급되고 있으며, 동남아시아에서는 열대식물을 이용한 저온열분해를 활용하여 바이오디젤을 생산하고 있다. 우리나라의 경우 대부분의 바이오매스는 발생되는 임야에서 재이용되거나 경제성이 있을 경우에 운송되어 재활용되고 있으며, 임부목과 같은 일부 바이오매스는 수익성이 없어 발생현지에 방치되는 경우도 있다. 본 연구에서 주목한 왕겨의 경우 미곡종합처리장에서 대량으로 발생되지만 그 활용도에 있어서 축적된 바이오에너지에 비해 에너지회수율이 저조하다고 할 수 있다. 왕겨는 임야에서 발생되는 폐목재나 다른 바이오매스에 비해 함유되어 있는 수분이 적고(12%), 휘발분의 함량이 많으며(58%), 고정탄소(17%), 회분(13%)로 열분해/가스화에 적용가능하다. 본 실험에서 생산된 합성가스의 활용방법으로는 보일러를 이용한 스팀 및 전력생산, 가스엔진을 이용한 전력생산, 폐열회수 등이 있으며 생산된 합성가스를 활용하기 위해서는 오염물질의 정제특성에 대한 연구가 선행되어야 한다. 따라서 본 연구에서는 합성가스 내에 존재하는 분진, 타르, HCl, HCN, $NH_3$의 제거효율을 조사하였다.

  • PDF

Estimation of Biomass Resource Conversion Factor and Potential Production in Agricultural Sector (농업부문 바이오매스 자원 환산계수 및 잠재발생량 산정)

  • Park, Woo-Kyun;Park, Noh-Back;Shin, Joung-Du;Hong, Seung-Gil;Kwon, Soon-Ik
    • Korean Journal of Environmental Agriculture
    • /
    • v.30 no.3
    • /
    • pp.252-260
    • /
    • 2011
  • BACKGROUND: Currently, national biomass inventory are being established for efficient management of the potential energy sources. Among the various types of biomass, agricultural wastes are considered to take the biggest portion of the total annual biomass generated in Korea, implying its importance. However, the currently estimated amount is not reliable because the old reference data are still used to estimate total annual amount of agricultural wastes. METHODS AND RESULTS: Therefore, to provide reliable estimation data, a correct conversion factor obtained by taking into account the current situation is required. For this, the current study was conducted to provide the conversion factors for each representative 8 crop through a field cultivation study. Also conversion factors for 18 crops were calculated using the average amount of each crop produced during 2004 and 2008, subsequently; total amount of agricultural wastes generated in 2009 was estimated using these conversion factors. The total biomass of rice straw and rice husk generated in 2009 were 6.5 and 1.1 million tons, respectively, which consist 75% of the total agricultural based wastes, while the total biomass of pepper shoots and apple pruning twigs were 1.0 and 0.6 million tons, respectively. Despite the high amount of rice-based biomass, their applicability for bio-energy production is low due to conventional utilization of these materials for animal feeds and beds for animal husbandry. In addition to exact estimation of the total biomass, temporal variations in both generated amount and the type of agricultural biomass materials are also important for efficient utilization; fruit pruning twigs (January to March); barley-, been-, and mustard-related waste materials (April to June); rice-related waste (September to October). CONCLUSION(s): Such information provided in this study can be used to establish a master plan for efficient utilization of the agricultural wastes on purpose of bio-energy production.