• Title/Summary/Keyword: 바이오 디젤유

Search Result 135, Processing Time 0.021 seconds

A Study on Characteristics for Emission Characteristics and Durability with Biodiesel Fuel(20%) in a Commercial Common Rail Type Diesel Engine (상용 커먼레일 디젤기관에서 바이오디젤유(20%) 적용시 내구특성 및 배기배출물 특성 연구)

  • Choi, Seung-Hun;Oh, Young-Taig
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.4
    • /
    • pp.61-66
    • /
    • 2007
  • A CRDI diesel engine used to commercial vehicle was fueled with 20% biodiesel fuel(BDF 20) in excess of 150 hours. Engine dynamometer testing was completed at regularly scheduled intervals to monitor the engine performance and exhaust emissions. The engine performance and exhaust emissions were sampled at 1 hour interval for analysis, Also, BSEC with BDF 20 resulted in lower than with diesel fuel. Since the biodiesel fuel used in this study includes oxygen of about 11%, it could influence the combustion process strongly. So, BDF 20 resulted in lower emissions of carbon monoxide, carbon dioxide, and smoke emissions without special increase of oxides of nitrogen than diesel fuel. It was concluded that there was no unusual deterioration of the engine, or any unusual change in exhaust emissions from using the BDF 20.

Durability Characteristics of an IDI Diesel Engine Using Biodiesel Fuel (바이오디젤유를 사용하는 간접분사식 디젤기관의 내구 특성)

  • Ryu, Kyun-Hyun;Oh, Young-Taig
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.6
    • /
    • pp.120-127
    • /
    • 2005
  • An IDI diesel engine used to agricultural tractors was fueled with $20\%$ biodiesel fuel(BDF 20) in excess of 300 hours. Engine dynamometer testing was completed at regularly scheduled intervals to monitor the engine performance and exhaust emissions. The engine performance and exhaust emissions were sampled at 1 hour interval for analysis. The combustion variation such as the combustion maximum pressure and the crank angle at this maximum pressure was not appeared during long-time dynamometer testing. Also, BSFC with BDF 20 resulted in lower than with diesel fuel. Since the biodiesel fuel used in this study includes oxygen of about $11\%$, it could influence the combustion process strongly. So, BDF 20 resulted in lower emissions of carbon monoxide, carbon dioxide, and smoke emissions without special increase of oxides of nitrogen than diesel fuel. It was concluded that there was no unusual deterioration of the engine, or any unusual change in exhaust emissions from using the BDF 20.

Durability Test of a Direct Injection Diesel Engine Using Biodiesel Fuel (바이오디젤유를 사용하는 직접분사식 디젤기관의 내구특성)

  • 유경현;오영택
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.1
    • /
    • pp.32-38
    • /
    • 2004
  • To evaluate the durability of direct injection diesel engine using biodiesel fuel, a small D. I. diesel engine was operated on a blend(BDF 20) of 20% biodiesel fuel and 80% diesel fuel for 200 hours. Engine dynamometer test was performed at a load of 90% and a speed of 1900 rpm to monitor the engine performance and exhaust emissions. Engine performance parameters and exhaust emissions were sampled at 1 hour interval for analysis. The combustion maximum pressure and the crank angle at this maximum pressure as a combustion variation factor were considered to study the combustion characteristics of BDF 20 in diesel engine during durability test. As the results, the standard deviations and errors of combustion variation factors on BDF 20 were very little and combustion characteristics were very stable during the durability test. BDF 20 resulted in lower emissions of carbon monoxide, carbon dioxide, and smoke emissions with special increase of nitrogen oxides compared to diesel fuel. There was no also unusual change in engine oil composition from using BDF 20. Most of engine parts were clean and showed little wear, but soots were detected around the hole of fuel injector when BDF 20 was used in direct injection diesel engine for 200 hours.

Optimization of Biodiesel Production from Rapeseed Oil Using Response Surface Methodology (반응표면분석법을 이용한 유채유로부터 바이오디젤 생산의 최적화)

  • Jeong, Gwi-Taek;Yang, Hee-Seung;Park, Seok-Hwan;Park, Don-Hee
    • KSBB Journal
    • /
    • v.22 no.4
    • /
    • pp.222-227
    • /
    • 2007
  • Biodiesel (fatty acid methyl esters) have used to as substitutes for petro-diesel by mixed-form with petro-diesel. In several processes of biodiesel production, alkali-catalyst transesterification produced to biodiesel of high contents with short reaction time. In this study, we investigate the optimal condition of alkali-catalyst transesterification of rapeseed oil produced at Jeju island in Korea using response surface methodology. The optimal condition of biodiesel production is reaction temperature 59.7$^{\circ}C$, catalyst amount 1.18%, oil to methanol molar ratio 1:8.75, and reaction time 5.18 min. At that reaction condition, the fatty acid methyl ester contents of product are above 97%. Our results may provide useful information with regard to the development of more economic and efficient biodiesel production system.

The Combustion Characteristics of Biodiesel Fuel as an Alternative Fuel for D.I. Diesel Engine (직접분사식 디젤기관에서 바이오디젤 연료의 연소특성)

  • Jang, S.H.;Suh, J.J.
    • Journal of Power System Engineering
    • /
    • v.12 no.2
    • /
    • pp.12-17
    • /
    • 2008
  • Biodiesel fuel(BDF) which is easily produced from vegetable oils such as soybean oil and rice bran oil can be effectively used as an alternative fuel in diesel engine. But biodiesel fuel can affect the performance and emissions in diesel engine because it has different chemical and physical properties from diesel fuel. To investigate the combustion characteristics of biodiesel fuel as an alternative fuel for D.I. diesel engine, the experiments were carried out at the three-cylinder, four stroke D.I. diesel engine with T/C. Experimental parameters adopted a conventional diesel fuel and a blend of biodiesel fuel derived from soybean. As a result of experiments in a test engine, BSFC with blend of BDF resulted in higher than with diesel fuel. The ignition delay decreased with blend of BDF than with diesel fuel.

  • PDF

The Characteristics on the Engine Performance for Variation of Fuel Injection Timing in DI Diesel Engine Using Biodiesel Fuel (직접분사식 디젤기관에서 바이오디젤 사용과 연료분사시기 변화에 따른 기관성능 특성)

  • Jang, S.H.
    • Journal of Power System Engineering
    • /
    • v.16 no.3
    • /
    • pp.16-21
    • /
    • 2012
  • Biodiesel is technically competitive with or offers technical advantages over conventional petroleum diesel fuel. Biodiesel is an environmentally friendly alternative liquid fuel that can be used in any diesel engine without modification. In this study, to investigate the effect of fuel injection timing on the characteristics of performance with DBF in DI diesel engine. The engine was operated at five different fuel injection timings from BTDC $6^{\circ}$ to $14^{\circ}$ at $2^{\circ}$ intervals and four loads at engine speed of 1800rpm. As a result of experiments in a test engine, maximum cylinder pressure is increased with leading fuel injection timing. Specific fuel oil consumption is indicated the least value at BTDC $14^{\circ}$ of fuel injection timing.

Combustion Characteristics of Biodiesel Fuel as an Alternative Fuel for a D.I. Diesel Engine(2) (직접분사식 디젤기관에서 바이오디젤 연료의 연소특성(2))

  • Jang, S.H.
    • Journal of Power System Engineering
    • /
    • v.13 no.6
    • /
    • pp.51-56
    • /
    • 2009
  • Recently, lots of researchers have been attracted to develop various alternative fuels in diesel engine. The use of biodiesel fuel(BDF) is an effective way of substituting diesel fuel in the long run. But biodiesel fuel can affect the performance and emissions in diesel engine because it has different chemical and physical properties from diesel fuel. In this study, to investigate the combustion characteristics of biodiesel fuel as an alternative fuel for D.I. diesel engine, experiments were carried out at the three-cylinder, four stroke D.I. diesel engine with T/C. As a result, shorter ignition delays were observed for the biodiesel blend cases relative to the diesel oil. The pick value of premixed combustion for the rate of heat release is increased with decreasing C.F.W. temperature.

  • PDF

An Experimental Study on Application of Biodiesel Fuel in Direct Injection Diesel Engine (직접 분사식 디젤기관에서 바이오디젤유의 적용에 관한 실험적 연구)

  • Oh, Y.I.;Choi, S.H.
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.818-823
    • /
    • 2001
  • Because the exhaust emissions from automobiles are increased, our environment is faced with very serious problems related to the air pollution in these days. In particular, the exhaust emissions of diesel engine are recognized main cause which influenced environment strong. Lots of researcher have been attempted to develop various alternative fuel on purpose to reduce these harmful emissions. In this study, the potential possibility of esterfied rice bran oil which is a kind of biodiesel fuel was investigated as an alternative fuel for diesel engine. And, we tried to analysis not only total hydrocarbon but hydrocarbon components from $C_1$ to $C_6$ in exhaust gas using gas chromatography to seek the reason for remarkable reduction of exhaust emission. Individual hydrocarbon$(C_1\simC_6)$ as well as total hydrocarbon of biodiesel fuel is reduced remarkably than that of diesel fuel in this experiment.

  • PDF

A Study for Characteristics of Performances and Exhaust Emission on Blending Rates of Biodiesel Fuel in a Common-Rail Injection Diesel Engine (커먼레일 분사방식 디젤기관에서 바이오디젤유의 혼합율에 따른 성능 및 배기배출물 특성 연구)

  • Choi, S.H.;Oh, Y.T.
    • Journal of Power System Engineering
    • /
    • v.10 no.2
    • /
    • pp.5-10
    • /
    • 2006
  • Our environment is faced with serious problems related to the air pollution from automobiles in these days. In particular, the exhaust emissions of diesel engine are recognized main cause which influenced environment strong. In this study, the potential possibility of biodiesel fuel was investigated as an alternative fuel for a naturally aspirated common rail diesel engine. The smoke emission of biodiesel fuel 30vol-%(max. content) was reduced in comparison with diesel fuel, that is, it was reduced approximately 60% at 4000rpm, full load. But, power, torque and brake specific energy consumption didn't have no large differences. But, NOx emission of biodiesel fuel was increased compared with commercial diesel fuel.

  • PDF

Biodiesel Production from Soybean Oil in Continuous Reactors (연속흐름반응기에서 바이오디젤 제조 특성 연구)

  • Kim, Deog-Keun;Lee, Jin-Suk;Park, Ji-Yeon;Park, Soon-Chul
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.589-593
    • /
    • 2007
  • 재생 가능한 자원인 동식물성 기름을 원료로 제조되는 수송용 연료 바이오디젤은 낮은 대기오염물질 배출과 $CO_2$ Neutral 특성으로 환경친화적인 연료로 인정을 받으며 전세계적으로 그 생산량이 급격히 증가하고 있다. 대부분의 상용화 공정은 염기촉매를 이용한 전이에스테르화 반응에 근거하고 있으며 높은 생산성을 위해 연속 공정을 채택하고 있다. 원료유 중의 유리지방산(free fatty acid, FFA)은 염기 촉매와 반응하여 지방산염(Soap)과 수분을 생성하며 반응촉매의 투입양을 증가시카고 반응 후에 글리세롤과 지방산 메틸에스테르와의 분리를 어렵게 만든다. 높은 수율과 후속공정의 부하를 줄이기 위해서는 식물성 원료유 중의 FFA는 고체 산촉매 하에서 메탄올과 에스테르화 반응시켜 전환 제거되어야 한다. 본 연구에서는 고체산 촉매인 Amberlyst-15을 충전한 4단 PBR(Packed Bed Reactor, 충전율 60%(v/v))에서 반응시간과 반응온도에 따른 대두원유의 전처리 효율을 조사하였으며 최적 전처리 조건을 도출하였다. 최적 전처리 조건에서 대두원유는 초기 산가 1.6에서 0.4-0.6으로 연속 전처리할 수 있었다. 본 연구에서는 연속 흐름 반응기인 PFR(Plug Flow Reactor)와 4단 CSTR(Continuous Stirred Tank Reactor)에서 균질계 촉매인 KOH 존재하에 대두유와 메탄올과의 전이에스테르화 반응 특성을 조사하였으며 각 연속 반응시스템에서 최적 운전 조건을 도출하였다. PFR 반응기에서 반응온도, 반응시간, 반응물 흐름방향, static mixer(SM) 개수에 따른 반응특성을 조사한 결과, PFR에서의 최적 반응조건은 하향류 흐름 방향과 3개의 SM를 설치한 조건에서 반응시간 5.8분, 반응온도 90$^{\cdot}C$, 메탄올:오일 몰비 9:1, KOH 농도 0.8%로 도출되었다. CSTR 반응기에서는 반응온도와 체류시간에 따른 반응특성을 조사하였으며 최적반응 조건으로 반응온도 80$^{\cdot}C$, 메탄올/오일 몰비 9:1, KOH 농도 0.8%, 체류시간 18.4분, 교반속도 250rpm로 조사되었다.

  • PDF