• 제목/요약/키워드: 바이오 디젤유

검색결과 135건 처리시간 0.025초

관세철폐가 친환경연료 산업에 미치는 일반균형적 파급 효과 (General Equilibrium Effects of Trade Liberalization on the Diffusion of Environment-friendly Fuels)

  • 배정환
    • 자원ㆍ환경경제연구
    • /
    • 제18권1호
    • /
    • pp.23-51
    • /
    • 2009
  • 본 연구는 우리나라가 자유무역정책을 실시할 경우 경제 전반과 친환경연료인 바이오디젤 산업에 미치는 영향을 정태적 연산가능일반균형모형(CGE)을 이용하여 분석하였다. 이론적으로 자유무역과 환경 간의 관계에 대해서는 '공해안식처 가설'이 1970~1980년대를 풍미하였으나, 1990년대 이후 Townsend and Ratnayakee 등은 자유무역이 생산효과, 규모효과, 구조효과, 규제효과를 통해 친환경기술 도입을 촉진하는 기능이 있음을 역설한 바 있다. 본 연구는 이러한 측면에서 과연 무역자유화의 효과로서 관세철폐가 우리나라 바이오디젤 산업에 어떤 영향을 미칠 수 있는지를 정량적으로 분석했다는 점에서 의의가 있다. 연구 결과 관세가 철폐되면 농업부문 산출은 전반적으로 감소하는 반면, 바이오디젤 산업은 팽창하며, GDP와 소비자 후생이 증가하는 것으로 나타났다. 바이오디젤 산업이 팽창하는 것은 원료인 대두유가 해외에서 수입됨에 따라 관세를 철폐할 경우 원료 수입가격이 하락하기 때문이다. 즉, 토지 생산성 측면에서 우리나라에서 생산되는 원료를 바이오디젤 원료로 이용하기보다는 동남아나 북 중남미 등에서 원료를 개척하여 수입하는 것이 경제적 이익을 극대화할 수 있고, 자유무역은 이를 더욱 가속화시킬 수 있다는 것이다.

  • PDF

바이오연료의 엔진 적용을 위한 실험적 기초연구 (Basic Experimental Study on the Application of Biofuel to a Diesel Engine)

  • 염정국
    • 대한기계학회논문집B
    • /
    • 제35권11호
    • /
    • pp.1163-1168
    • /
    • 2011
  • 압축착화 방식의 디젤엔진은 스파크점화 방식의 가솔린 엔진에 비하여 열효율이 높아 연비가 향상되고 그 결과 $CO_2$ 저감효과도 높다. 또한 디젤엔진은 점화계통 장치의 불필요 등 기존 엔진의 개조비용이 적어 세탄가가 높은 바이오연료의 적용엔진으로서 적합한 장점이 있다. 따라서 본 연구에서는 식물성 자트로파유, 대두유 2종의 바이오연료와 경유연료의 분무특성을 비교 분석하였다. 실험변수로서는 분사압력과 자트로파 연료의 경우는 혼합비율(BD3, BD5, BD20)을 달리하였다. 분사압력은 500bar, 1000bar, 1500bar 및 1600bar로 설정하고 분사기간은 500ms로 동일하게 하였다. 본 연구의 결과로서, 사용한 바이오디젤 연료의 종류 및 분사압력 변화에 대한 분무거동특성(분무각)의 변화는 뚜렷하지 않으나, 고압분사의 경우가 분무각이 약간 감소하는 결과를 얻을 수 있었다.

바이오디젤유를 사용하는 간접분사식 디젤기관의 내구 및 배기 특성 (The Durability and Exhaust Emission Characteristics of an IDI Diesel Engine Using Biodiesel Fuel)

  • 유경현;오영택
    • 한국자동차공학회논문집
    • /
    • 제14권4호
    • /
    • pp.115-122
    • /
    • 2006
  • To evaluate the durability characteristics of in-direct injection diesel engine using BDF 20(a blend of 20% biodiesel fuel and 80% diesel fuel in volume), an IDI diesel engine used to commercial vehicle was operated on BDF 20 for 300 hours. Engine dynamometer testing was completed at regularly scheduled intervals to investigate the combustion characteristics, engine performance and exhaust emissions. The engine performance and exhaust emissions were sampled at 1 hour interval for analysis. From the results, the combustion variations such as the combustion maximum pressure($P_{max}$) and the crank angle at which this maximum pressure occurs(${\Theta}_{Pmax}$) were not appeared during long-time dynamometer testing. Also, BSFC with BDF 20 resulted in lower than with diesel fuel. The peak pressure with BDF 20 was higher than that with diesel fuel due to the oxygen content in BDF. And, BDF 20 resulted in lower emissions of carbon monoxide, carbon dioxide, and smoke emissions with a little increase of oxides of nitrogen than diesel fuel. It was concluded that there was no unusual deterioration of the engine, or any unusual change in exhaust emissions during the durability test of an IDI diesel engine using BDF 20.

바이오디젤유를 이용한 CRDI방식 디젤기관의 흡기포트내 선회기 적용 특성에 관한 연구 (A Study on the Application Characteristics of Biodiesel Fuel in a CRDI Diesel Engine on the Swirler in Intake Manifold)

  • 임석연;정영철;오동진;류정인
    • 한국자동차공학회논문집
    • /
    • 제15권5호
    • /
    • pp.17-23
    • /
    • 2007
  • This study aims to investigate the property of engine performance and the material property of exhaust gas by application of the intake swirler The fuel of BDF 20 was made by mixing 80% of diesel fuel and 20% of biodiesel fuel. These fuels were used and tested in the diesel engine of CRDI type used currently. The swirler was made by streamlined shape to lessen the intake resistance, The three types of its wing angle are $20^{\circ}$, $40^{\circ}$ and $60^{\circ}$. From experimental results, we found that the characteristics of engine performance, soot was effective in wing angle of $20^{\circ}$ and NOx was effective in $60^{\circ}$.

DI 디젤기관에서 바이오디젤유와 함산소연료(EGBE) 동시적용 및 EGR에 의한 배기배출특성 (The Characteristics of Emission on Simultaneous Application with Biodiesel, Oxygenated Fuel(EGBE) and EGR in a DI Diesel Engine)

  • 최승훈;오영택
    • 한국자동차공학회논문집
    • /
    • 제18권3호
    • /
    • pp.143-148
    • /
    • 2010
  • In this study, the potential possibility of biodiesel fuel(BDF) and oxygenated fuel(ethylene glycolvmono-n-butyl ether; EGBE) was investigated as an effective method of decreasing the smoke emission. The smoke emission of blending fuel (BDF and EGBE 0~20 vol-%) was reduced in comparison with diesel fuel and it was reduced approximately 64% at 2000 rpm, full load in the 20% of blending rate. But torque and brake specific energy consumption( BSEC) didn't have no large differences. Also, the effects of exhaust gas recirculation(EGR) for the reduction of NOx emission has been investigated. Consequently, It was found that simultaneous reduction of smoke and NOx emission was achieved with BDF(90 vol-%) and EGBE(10 vol-%) blended fuel and cooled EGR method(5~10%).

직접분사식 디젤기관에서 바이오디젤유와 함산소성분 혼합연료 적용시 배기배출물 특성 및 EGR의 적용 연구 (A Study on Emission Charncteristics and EGR Application of Blending Fuels with Biodiesel Fuel and Oxygenate Component in a D.I. Diesel Engine)

  • 최승훈;오영택
    • 한국자동차공학회논문집
    • /
    • 제16권2호
    • /
    • pp.43-48
    • /
    • 2008
  • The exhaust emissions of diesel engine are recognized as a major cause influencing environment strongly. In this study, the possibility of biodiesel fuel and oxygenated fuel(dimethoxy methane; DMM) was investigated as an alternative fuel for a naturally aspirated direct injection diesel engine. The smoke emission of blending fuel(biodiesel fuel 90vol-%+DMM 10vol-%) was reduced approximately 70% at 2500rpm, full load, in comparison with the diesel fuel. But, power, torque and brake specific energy consumption showed no significant differences. But, NOx emission of biodiesel fuel and DMM blended fuel increased compared with commercial diesel fuel due to the oxygen component in the fuel. It was needed a NOx reduction counterplan that EGR method was used as a countermeasure for NOx reduction. It was found that simultaneous reduction of smoke and NOx emission was achieved with BDF(95 vol-%) and DMM(5 vol-%) blended fuel and cooled EGR method(15%).

IDI 디젤기관에서 바이오디젤유 적용시 분사시기변화에 따른 기관성능과 매연 및 NOx 배출 특성 (The Characteristics on the Engine Performance, Smoke and NOx Emission for Variation of Fuel Injection Timing in an IDI Diesel Engine Using Biodiesel Fuel)

  • 최승훈;오영택
    • 한국자동차공학회논문집
    • /
    • 제16권4호
    • /
    • pp.75-80
    • /
    • 2008
  • Biodiesel fuel(BDF) can be effectively used as an alternative fuel in diesel engine. However, BDF may affect the performance and exhaust emissions in diesel engine because it has different physical and chemical properties from diesel fuel such as viscosity, compressibility and so on. To investigate the effect of injection timing on the characteristics of performance and exhaust emissions with BDF in IDI diesel engine, it was applied the BDF derived from soybean oil in this study. The engine was operated at seven different injection timings from TDC to BTDC $12^{\circ}CA$ and six loads at a single engine speed of 1500rpm. When the fuel injection timing was retarded, better results were showed, which may confirm the advantages of BDF. The simultaneous reduction of smoke and NOx was achieved at some fixed fuel injection timings of an IDI diesel engine.

CRDI 방식 디젤기관에서 바이오디젤유 적용시 매연과 NOx의 동시저감에 관한 실험적 연구 (An Experimental Study on Simultaneous Reduction of Smoke and NOx with Biodiesel Fuel in a CRDI Type Diesel Engine)

  • 최승훈;오영택
    • 한국자동차공학회논문집
    • /
    • 제15권3호
    • /
    • pp.35-40
    • /
    • 2007
  • Our environment is faced with serious problems related to the air pollution from automobiles in these days. In particular, the exhaust emissions of diesel engine are recognized main cause which influenced environment strong, In this study, the potential possibility of biodiesel fuel was investigated as an alternative fuel for a naturally aspirated common rail diesel engine. The smoke emission of biodiesel fuel 5vol-%(min. content) was reduced in comparison with diesel fuel, that is, it was reduced approximately 60% at 4000rpm, full load. But, power, torque and brake specific energy consumption didn't have no large differences. But, NOx emission of biodiesel fuel was increased compared with a commercial diesel fuel. Also, the effects of exhaust gas recirculation(EGR) on the characteristics of NOx emission has been investigated. It was found that simultaneous reduction of smoke and NOx was achieved with biodiesel fuel(5vol-%) and cooled EGR method($5{\sim}10%$) in a common rail diesel engine.