• Title/Summary/Keyword: 바이오 디젤유

Search Result 135, Processing Time 0.022 seconds

A New F1 Hybrid Variety of Rapeseed 'Suan' with Early Maturing and High Oleic Acid (조숙 올레인산 고함유 1대잡종 유채 신품종 '수안')

  • Lee, Yong-Hwa;Kim, Kwang-Soo;Jang, Young-Seok;Cho, Hyun-Jun;Choi, Hyun-Gu;Jang, Young-Gik;Kang, Dal-Soon;Kang, Hyung-Sik;Suh, Sae-Jung
    • Korean Journal of Breeding Science
    • /
    • v.43 no.3
    • /
    • pp.172-176
    • /
    • 2011
  • 'Suan' is a new $F_1$ hybrid variety of rapeseed (Brassica napus L.) with early maturing and high oleic acid. This hybrid variety was bred by the cross between Mokpo-CGMS (male sterile line) and 8516-B-5-6-5-3 (restore line) for the production of bio-diesel and edible oil in 2006. 'Suan' has green and parted leaf, yellowish flower, and black seed coat. 'Suan' is more tolerant to lodging and stem rot compared to 'Sunmang', check variety. The ripening date of 'Suan' is June 2nd which is 6 days earlier than 'Sunmang'. Yield trials were conducted from 2006 to 2007 and regional adaptation trials were examined at five locations each in 2008 and 2009. The average seed yield of regional adaptation trials was 381 kg/10a that was 4% higher than that of 'Sunmang'. Total oil content of 'Suan' was 44.3%. Oleic acid content was 68.3%, which is 5.2% higher than 'Sunmang' but, erucic acid was not detected. Total glucosinolate content was 2.31 mg/g. Therefore, this variety is recommended as a leading variety at southwestern area including Jeonnam, Jeonbuk and Kyongnam provinces of South Korea.

A Study on a Hybrid Energy System to Reduce CO2 Emission In Mavuva Island, Fiji (마부바섬의 이산화탄소 감축을 위한 복합 에너지 시스템에 대한 연구)

  • Jung, Tae Yong;Hyun, Jung Hee;Lee, Seul;Huh, Minkyung
    • Journal of Environmental Impact Assessment
    • /
    • v.26 no.4
    • /
    • pp.217-226
    • /
    • 2017
  • Although the effects of climate change are universal, Small Island Developing States (SIDS) are considered to be most vulnerable. SIDS heavily rely on imported oil and fossil fuels for electricity generation and transportation, which makes them economically vulnerable and exposed to fluctuating oil price. Among the reasons SIDS highly depend on diesel fuel is due to the dispersed population living in remote islands which means, providing electricity through on on-grid system is difficult. Fiji as one of the SIDS, has actively promoted renewable sourced energy through a national plan to mitigate the impacts of climate change. In order to determine how feasible implementing a renewable energy (RE) system will be in Fiji, this study chose a remote island called Mavuva Island to test application of a hybrid RE system using HOMER. A combination of energy storage system (ESS), solar photovoltaic (PV) and diesel generator turns out to be the most cost effective and optimal configuration, resulting in effective greenhouse gas reduction for the given region.

Current biotechnology for the increase of vegetable oil yield in transgenic plants (식물 지방산 생산량의 증진을 위한 생명공학 연구현황)

  • Lee, Kyeong-Ryeol;Choi, Yun-Jung;Kim, Sun-Hee;Roh, Kyung-Hee;Kim, Jong-Bum;Kim, Hyun-Uk
    • Journal of Plant Biotechnology
    • /
    • v.38 no.4
    • /
    • pp.241-250
    • /
    • 2011
  • The most part of vegetable oils is accumulated as storage lipid, triacylglycerol (TAG) in seed and used as energy source when seed is germinated. It is also used as essential fatty acids and energy source for human and animal. Recently, vegetable oils have been more and more an important resource because of the increasing demand of vegetable oils for cooking and industrial uses for bio-diesel and industrial feedstock. In order to increase vegetable oils using biotechnology, over-expressing or repressing the regulatory genes involved in the flow of carbon into lipid biosynthesis is critical during seed development. In this review, we described candidate genes may influence oil amount and investigate their potential for oil increase. Genes involved in the regulation from biosynthesis of fatty acids to the accumulation oils in seed can be classified as follows: First, genes play a role for synthesis precursor molecules for TAG. Second, genes participate in fatty acid biosynthesis and TAG assembly. Lastly, genes encodes transcription factors involved in seed maturation and accumulation of seed oil. Because factors/genes determining oil quantity in seed is complex as mentioned, recently regulation of transcription factors is being considered more favorable approach than manipulate multiple genes for increasing oil in transgenic plants. However, it should be figured out the problem that bad agricultural traits induced by the overexpression of transcription factor gene.

Characteristics of Fatty Acid Composition and Properties by Blending of Vegetable Oils (식물성 기름의 혼합을 통한 지방산 조성 및 이화학적 특성 변화)

  • Lee, Tae Sung;Lee, Yong Hwa;Kim, Kwang Soo;Kim, Wook;Kim, Kwan Su;Jang, Young Seok;Park, Kwang Geun
    • Korean Journal of Plant Resources
    • /
    • v.25 no.5
    • /
    • pp.624-632
    • /
    • 2012
  • As there have been lately many worldwide resource challenges such as potential exhaustion of fossil fuels, sudden rise of oil price and ever-rising grain pricing due to global food crisis, there have been more interests focused on recycling vegetable oils and fats into clean natural fuel and producing new resources based on waste cooking oil as a part of reusing waste resources. An Experiment was performed by using ratio of 50:50, 75:25 (w/w) mixture of based rapeseed oil, camellia oil, and olive oil. 50:50, 25:75 (w/w) mixture of based palm oil. The result was that the oleic acid ($C_{18:1}$) got the lowest percentage of 42.8%, when we combined the mixture of rapeseed oil and soybean oil. While the highest percentage of 72.1% was when the mixture of camellia oil and rapeseed oil were combined at 50:50 ratio. In 75:25 (w/w) case, mixture of rapeseed oil and soybean oil got the lowest. The highest ratio was the mixture of camellia oil and olive oil. Based on the component of palm oil, the total saturated fatty acid was decreased. It is expected that stabilizing oxidation through controlling of fatty acid after mixture and that liquidity at a low temperature. The acid value indicated that stabilizing oxidation got a range of highest to lowest. Camellia oil ranked as the highest, followed by olive oil, and the oil seeds as the lowest in rank. Controlling iodine value through mixture and improvement of stabilizing oxidation will provide a good quality. The quality of color has no significant change about mixture in ratio and maintenance. The reduction of the cost of refining process is expected by controling of mixture ratio at biodiesel production in the future.

Influence of Reaction Parameters on Preparation of Biodiesel from Rapeseed Oil using Supercritical Methanol (초임계 메탄올을 이용한 유채유 바이오디젤 제조에 대한 반응인자들의 영향)

  • Lim, Seon-Muk;Shin, Hee-Yong;Oh, Sea Cheon;Bae, Seong-Youl
    • Applied Chemistry for Engineering
    • /
    • v.21 no.2
    • /
    • pp.174-177
    • /
    • 2010
  • In this study, non-catalytic transesterification from rapeseed oil using supercritical methanol was carried out by varying the operation parameters such as temperature ($320{\sim}365{^{\circ}C}$), time (0~20 min), pressure (10~35 MPa), molar ratio of oil to methanol (1 : 15~60) and agitation speed (0~500 rpm). In order to evaluate the effects of reaction parameters on the content of fatty acid methyl esters (FAMEs), we carried out the study using a batch reactor. The content of FAMEs increased when the temperature increased. However, the content of FAMEs decreased with temperature above $335^{\circ}C$ and time above 5 min. The content of FAMEs increased with increasing the molar ratio of methanol to oil but the content of FAMEs was slightly affected by molar ratio of oil to methanol above 1 : 45 and pressure above 20 MPa. It was found that the agitation speed above 100 rpm slightly affected the content of FAMEs. The highest content of FAMEs in biodiesel (95%) was obtained under the reaction conditions: temperature of 335 ${^{\circ}C}$, time of 10 min, pressure of 20 MPa, molar ratio of 1 : 45 (oil to methanol) and agitation speed of 250 rpm.