• Title/Summary/Keyword: 바이오필터

Search Result 205, Processing Time 0.02 seconds

Development of Bio-AC Filter for Heavy Metal Adsorption (중금속 제거에 우수한 바이오 활성탄 필터의 개발)

  • Kim, Hak-Hee;Yoon, Kyung-Sik
    • 유체기계공업학회:학술대회논문집
    • /
    • 2003.12a
    • /
    • pp.541-546
    • /
    • 2003
  • Activated carbon was prepared from coffee wastes by chemical activation with $ZnCl_{2}$, NaOH and KOH. The coffee wastes was used as raw material. Preparation process involves the roasting of raw material and carbonization of roasted material followed by chemical activation. N2-BET surface areas of activated coffee char prepared by chemical activation was measured as $1,110{\sim}2,442m^{2}/g$. Removal of copper and chromium in solution by activated carbon was carried out and structural change of pore surface was observed by SEM.

  • PDF

Operation of biofilters with different packing material (담체 변화에 따른 Labscale 바이오 필터의 성능 실험)

  • D. Cho;Kwon, Sung-Hyun
    • Proceedings of the KAIS Fall Conference
    • /
    • 2003.06a
    • /
    • pp.331-333
    • /
    • 2003
  • The low-pH biofiltration system in laboratory experiments demonstrate defective performance for treating H2S. When leachate pH was in the range of 1.5 to 4, the biofilters in three different media removed H2S wi th efficiencies greater than 99% while it was treated as a single contaminant. The posibility of using a single-stage low pH biofilter depends on its performance in treating VOCs. During Phase 2, a single-stage biofilter was effective for treating mixtures of H2S and toluene with toluene concentrations below 20ppm and leachate pH between 2 and 3.5. Biofiltration of xylene was ineffective when pH was lower than 1.5. The treatment system acclimated most slowly to benzene, and treatment of benzene was apparently subject to some competive inhibition from xylene and toluene. However. co-treatment was possible after some acclimation time. Xylene was not easily treated, with higher elimination capacities and no sign of competitive inhibition.

  • PDF

Development of Prediction Model for the Na Content of Leaves of Spring Potatoes Using Hyperspectral Imagery (초분광 영상을 이용한 봄감자의 잎 Na 함량 예측 모델 개발)

  • Park, Jun-Woo;Kang, Ye-Seong;Ryu, Chan-Seok;Jang, Si-Hyeong;Kang, Kyung-Suk;Kim, Tae-Yang;Park, Min-Jun;Baek, Hyeon-Chan;Song, Hye-Young;Jun, Sae-Rom;Lee, Su-Hwan
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.23 no.4
    • /
    • pp.316-328
    • /
    • 2021
  • In this study, the leaf Na content prediction model for spring potato was established using 400-1000 nm hyperspectral sensor to develop the multispectral sensor for the salinity monitoring in reclaimed land. The irrigation conditions were standard, drought, and salinity (2, 4, 8 dS/m), and the irrigation amount was calculated based on the amount of evaporation. The leaves' Na contents were measured 1st and 2nd weeks after starting irrigation in the vegetative, tuber formative, and tuber growing periods, respectively. The reflectance of the leaves was converted from 5 nm to 10 nm, 25 nm, and 50 nm of FWHM (full width at half maximum) based on the 10 nm wavelength intervals. Using the variance importance in projections of partial least square regression(PLSR-VIP), ten band ratios were selected as the variables to predict salinity damage levels with Na content of spring potato leaves. The MLR(Multiple linear regression) models were estimated by removing the band ratios one by one in the order of the lowest weight among the ten band ratios. The performance of models was compared by not only R2, MAPE but also the number of band ratios, optimal FWHM to develop the compact multispectral sensor. It was an advantage to use 25 nm of FWHM to predict the amount of Na in leaves for spring potatoes during the 1st and 2nd weeks vegetative and tuber formative periods and 2 weeks tuber growing periods. The selected bandpass filters were 15 bands and mainly in red and red-edge regions such as 430/440, 490/500, 500/510, 550/560, 570/580, 590/600, 640/650, 650/660, 670/680, 680/690, 690/700, 700/710, 710/720, 720/730, 730/740 nm.

Characteritics of Toluene and $H_2S$ Removal in a Biotrickling filters with Plastic & Woodchip composite Media (복합플라스틱계 담체를 이용한 Biotrickling filters의 Toluene과 황화수소 제거특성)

  • Yim, Dong-Won;Kong, Sung-Ho
    • Journal of Soil and Groundwater Environment
    • /
    • v.12 no.2
    • /
    • pp.37-46
    • /
    • 2007
  • This study developed composition-plastic media with woodchips and plastic as main materials, and examined the performance of media. Compared to the existing commercial media, the media had similar performance in removal efficiency and microbes attaching characteristic, and was evaluated that they are distinguished from economic side. Performance test of media was conducted to examine the removal capacity of toluene and hydrogen sulfide in a gas stream by using a lab-scale biotrickling filter systems packed with them. At a volumetric loading of $1.5\;m^3/hr$ with inlet concentration 260 ppm and empty bed residence time (EBRT) 42s, the toluene removal efficiency was shown over 90%, and the maximum elimination capacity of toluene in the biotrickling filter was $77g/m^3{\cdot}hr$. Effective co-treatments of $H_2S$ and Toluene were observed in the lab-scale biotrickling filters. The maximum elimination capacity of $H_2S$ was $100\;g-S/m^3{\cdot}hr$. Up to 100 ppm, the concentration of $H_2S$ did not have an effect on toluene removal efficiency, but the removal efficiency of toluene decreased with increasing inlet $H_2S$ concentration.

A Study on the Removal Efficiency of Harmful Pollutants in the Cooking Chamber (조리실내의 유해오염물질 제거율에 관한 연구)

  • Kwon, Woo-Taeg;Lee, Woo-Sik
    • Culinary science and hospitality research
    • /
    • v.22 no.8
    • /
    • pp.149-156
    • /
    • 2016
  • The purpose of this study is to reduce the contaminants (total volatile organic compounds (TVOCs), fine particle, odor and total airborne bacteria) during cooking process in cooking chamber, and to decrease the health damage in indoor space that has bad work environment. In order to solve the shortcomings of existing air purifiers and remove all kinds of pollutants effectively, this study focused on the development of indoor air purifiers which are made of bar type. Bio-ceramics filter which combines activated carbon and loess. The air cleaners developed with 4 measuring items including TVOCs, particulate matter, complex odor and total airborne bacteria were measured comparing their pre-service test to their post-service test after a period of time. The measured results showed higher removal efficiency of 91.02% as the concentration of TVOCs was reduced from $2,500{\mu}g/m^3$ to $223{\mu}g/m^3$. Second, the particulate matter removal ratio was 97.51% efficient with average concentration of $26.68{\mu}g/m^3$. Third, the odor showed 95.20% reduction as air dilution ratio averaged out at 144. Last, total airborne bacteria was eliminated by over 94% showing the changeable concentration from $787{\sim}814CFU/m^3$ to $47{\sim}40CFU/m^3$. In addition, the removal rate of harmful pollutants is excellent, and it is expected that the environment of the existing poor cooking room will be greatly improved by using the developed air purifier in combination with the ventilation device and the stove hood.

Synthesis of Poly(alkyl methacrylate)s Containing Various Side Chains for Pour Point Depressants (서로 다른 측쇄 구조를 가진 폴리(알킬 메타크릴레이트)계의 저온유동성 향상제 합성)

  • Hong, Jin-Sook;Kim, Young-Wun;Chung, Keun-Wo;Jeong, Soo-Hwan
    • Applied Chemistry for Engineering
    • /
    • v.21 no.5
    • /
    • pp.542-547
    • /
    • 2010
  • n-Paraffin and saturated fatty acid methyl esters in the diesel and bio-diesel fuel crystallize at low temperature. Many articles have addressed various solutions for the low temperature crystallization problem and one of them is the use of methacrylate copolymers. In this work, we synthesized a series of copolymers in the reaction condition of 70 : 30 molar ratio of lauryl methacrylate (LMA) (or stearyl methacrylate (SMA)) and alkyl methacrylates. The structures of the copolymers were characterized by $^1H$-NMR and FT-IR spectroscopy, and the molecular weight of copolymers were obtained from Gel Permeation Chromatography (GPC) method. The concentrations of additives were 500~1000 ppm and 1000~10000 ppm in diesel fuels and bio-diesel fuel (BD5 and BD20), respectively. The addition of copolymers changes the many properties of fuel such as the pour point (PP), cloud point (CP) and cold filtering plugging point (CFPP). For example, the low temperature properties of the copolymers containing SMA ($PSMAmR_2n$) were excellently improved about 15, 7, and $10^{\circ}C$ for PP, CP and CFPP, respectively.

Complete genome sequence of Comamonas sp. NLF-7-7 isolated from biofilter of wastewater treatment plant (폐수처리장의 바이오 필터로부터 분리된 Comamonas sp. NLF-7-7 균주의 유전체 염기서열 해독)

  • Kim, Dong-Hyun;Han, Kook-Il;Kwon, Hae Jun;Kim, Mi Gyeong;Kim, Young Guk;Choi, Doo Ho;Lee, Keun Chul;Suh, Min Kuk;Kim, Han Sol;Lee, Jung-Sook;Kim, Jong-Guk
    • Korean Journal of Microbiology
    • /
    • v.55 no.3
    • /
    • pp.309-312
    • /
    • 2019
  • Comamonas sp. NLF-7-7 was isolated from biofilter of wastewater treatment plant. The whole-genome sequence of Comamonas sp. NLF-7-7 was analyzed using the PacBio RS II and Illumina HiSeqXten platform. The genome comprises a 3,333,437 bp chromosome with a G + C content of 68.04%, 3,197 total genes, 9 rRNA genes, and 49 tRNA genes. This genome contained pollutants degradation and floc forming genes such as sulfur oxidization pathway (SoxY, SoxZ, SoxA, and SoxB) and floc forming pathway (EpsG, EpsE, EpsF, EpsG, EpsL, and glycosyltransferase), respectively. The Comamonas sp. NLF-7-7 can be used to the purification of wastewater.

Biofiltration of Gaseous Toluene Using Activated Carbon Containing Polyurethane Foam Media (활성탄 함유 폴리우레탄 담체를 사용하는 바이오필터에 의한 가스상 톨루엔의 처리)

  • Amarsanaa Altangerel;Shin Won-Sik;Choi Jeong-Hak;Choi Sang-June
    • Journal of Environmental Science International
    • /
    • v.15 no.6
    • /
    • pp.513-525
    • /
    • 2006
  • In recent decades, biofiltration has been widely accepted for the treatment of contaminated air stream containing low concentration of odorous compounds or volatile organic compounds (VOCs). In this study, conventional biofilters packed with flexible synthetic polyurethane (PU) foam carriers were operated to remove toluene from a contaminated air stream. PU foams containing various amounts of pulverized activated carbon (PAC) were synthesized for the biofilter media and tested for toluene removal. Four biofilter columns were operated for 60 days to remove gaseous toluene from a contaminated air stream. During the biofiltration experiment, inlet toluene concentration was in the range of 0-150 ppm and EBRT (i.e., empty bed residence time) was kept at 26-42 seconds. Pressure drop of the biofilter bed was less than 3 mm $H_2O/m$ filter bed. The maximum removal capacity of toluene in the biofilters packed with PU-PAC foam was in the order of column II (PAC=7.08%) > column III (PAC=8.97%) > column I (PAC=4.95%) > column IV (PAC=13.52%), while the complete removal capacity was in the order of column II > column I > column III > column IV. The better biofiltration performance in column II was attributed to higher porosity providing favorable conditions for microbial growth. The results of biodegradation kinetic analysis showed that PU-PAC foam with 7.08% of PAC content had higher maximum removal rate ($V_m$=14.99 g toluene/kg dry material/day) than the other PU-PAC foams. In overall, the performance of biofiltration might be affected by the structure and physicochemical properties of PU foam induced by PAC content.

Development of Process for Village Scale Wastewater Treatment Using Biofilter and Sulfur-limestone (바이오필터와 황-석회석을 이용한 마을하수 처리 공정 개발)

  • Kim, Tae-Kyu
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.49 no.2
    • /
    • pp.75-86
    • /
    • 2007
  • This process which has a connection of biofilter and sulfur-limestone has been developed to treat organic substances including BOD, COD and SS etc. and to treat sulfur-limestone is for denitrification.. The whole process consists of chemical reaction tank, sedimentation tank, trickling filter, denitrification tank The trickling filter is equipped with a reactor filled with absorptive filter, and the sulfur denitrification tank is filled with sulfur-limestone mixed media. After setting up practical facilities whose capacity is 60 tons a day, we have observed the removal efficiencies of pollutants through 60 experiments during Summer and Winter seasons. The average concentration of polluted water was BOD for 3.6 mg/L, $COD_{Mn}$ for 11.3 mg/L, SS for 2.8 mg/L, T-N for 8.6 mg/L, and T-P for 0.8 mg/L, and the rate of treatment efficiencies 96.5%, 84.7%, 96.5%, 79.2%, and 80.8%, respectively was found through the experiments. The average treatment efficiency for BOD and $COD_{Mn}$ was 85.0% and 55.7%, respectively and the average removal efficiency for NH4+-N was 84.9% in the trickling filter. The removal efficiency in the denitrification tank is as follows; The removal rate of $NO_3^--N$ was as high as 93.2% within the compass of pH 6.3 to 7.3 through $16.8{\sim}37.0mg/L$ flown into $NO_3^--N$ and $0.1{\sim}8.3mg/L$ outflown. It had observed that this process has implemented highly efficient and advanced treatment without external carbon sources and internal recycle during its process. In conclusion, this process is suitable for a sewerage in a small village due to the merits of low power consumption and easy maintenance.

Effect of Tobermolite, Perlite and Polyurethane Packing Materials on Methanotrophic Activity (메탄산화세균의 활성에 미치는 tobermolite, perlite 및 Polyurethane 담체의 영향)

  • Jeong, So-Yeon;Yoon, Hee-Young;Kim, Tae Gwan;Cho, Kyung-Suk
    • Microbiology and Biotechnology Letters
    • /
    • v.41 no.2
    • /
    • pp.215-220
    • /
    • 2013
  • Biofilters for the removal of methane using tobermolite, perlite and polyurethane as packing materials have been undergoing recent development. The effects of these packing materials on methane oxidation activity were evaluated in this study. Mixed methanotrophs (consortia A, B, C and D) from wetland and landfill soils were used as the inoculum sources. The influences of packing materials, consisting of tobermolite, perlite, and polyurethane, on the methane oxidation rate and methanotrophic bio-mass, were estimated. When perlite was added into the methanotrophic cultures, the methane oxidation rate was more than twice that of the control (without packing materials), and the methanotrophic biomass increased more than 10 fold. The ratio of methanotrophic bacteria to total bacteria under with tobermolite packing material was higher than the control and the other packing materials, indicating that tobermolite can serve as a specific packing material where dominance of methanotrophs is desired. Therefore, perlite and tobermolite provide habitats which increase the activity of methanotrophic bacteria, and these packing materials are promising for use in methane oxidation processes.