• 제목/요약/키워드: 바이오연료

검색결과 682건 처리시간 0.032초

촉매 열수탄화(Hydrothermal carbonization)공정을 이용한 폐목재의 고형연료 제조 및 특성 연구 (Conversion of Wood Waste into Solid Biofuel Using Catalytic HTC Process)

  • 주보경;연혜진;이상일;안수정;이경재;장은석;원종철
    • 신재생에너지
    • /
    • 제10권2호
    • /
    • pp.12-18
    • /
    • 2014
  • The objective of this work is to produce solid biofuel from sawdust using the HTC (Hydrothermal carbonization) process. The HTC process of feedstock involves the raw material coming into contact with high temperature and pressurized water. The HTC process could produce gaseous, liquefied and solid products, but this study focused on solid product only as an alternative to coal. In this study, sawdust used for a feedstock and its moisture content was under 5%. Water was added with the feedstock to raise moisture content to 80% and also used catalysts. The HTC process was performed at temperature range from 200 to $270^{\circ}C$ and reaction time was 15 to 120 min. Rising temperature resulted in increasing the higher heating value (HHV) of HTC product. In case of adding catalyst, HHV of solid biofuel was higher and reaction occurred at lower temperature and pressure. Also, HTC solid product had been characterized and found to be hydrophobic, increased HHV (over 40%), and pelletized easily compared to raw material.

백합나무의 반탄화 처리를 이용한 고체연료화 가능성 조사 (Potential of Torrified Tulip-tree for the Production of Solid Bio-fuels)

  • 안병준;양인;김상태;박대학
    • 신재생에너지
    • /
    • 제9권4호
    • /
    • pp.40-50
    • /
    • 2013
  • This study was performed to investigate the potential of torrefied tulip tree (TT) for the production of pellets. For this purpose, chemical composition and fuel characteristics of torrefied TT were examined. In addition, pellets were fabricated by using sawdust of torrefied TT chip, and durability of the pellet was measured. Lignin content of torrefied TT was higher than that of non-torrefied TT, and increased with the increases of torrefaction temperature and time. Fuel characteristics of torrefied TT were affected by torrefied conditions, and the characteristics were influenced more by torrefaction temperature than by torrefaction time. Higher heating value (HHV) and ash content (AC) of torrefied tulip tree increased with increasing torrefaction temperature, and the values were much higher than HHV and AC values of non-torrefied TT. Durability of pellets fabricated with $230^{\circ}C$- and $250^{\circ}C$-torrefied TT was higher than that of $270^{\circ}C$-torrefied TT, and the value exceeded the minimum requirement (-97.50%) of the 1st-grade pellet standard designated by Korea Forest Research Institute. Based on the results, torrefaction treatment of $250^{\circ}C/50min$ to TT might be a optimal condition for the production of TT pellets considering the mass balance and fuel characteristics of TT as well as the durability of the pellets. Thus, it is confirmed that torrefied TT can be used as a raw material for the production of bio-pellets.

Oil Palm Frond의 반탄화를 통한 연료화 연구 (The Fuelization Study on the Oil Palm Frond Through Torrefaction)

  • 이명석;정광식;정상진;이관영
    • Korean Chemical Engineering Research
    • /
    • 제51권4호
    • /
    • pp.465-469
    • /
    • 2013
  • 본 연구는 반탄화된 OPF(oil palm fronds)의 연료로써 이용가능성을 알아보았다. OPF는 200, 250, 300, $350^{\circ}C$에서 각각 1시간과 2시간 동안 반탄화를 진행하였다. 반탄화된 OPF는 온도가 높아짐에 따라 그리고 반탄화 시간이 증가됨에 따라 발열량이 증가하였다. 또한, 반탄화 시간보다는 반탄화 온도가 더 중요한 요소였다. 하지만 반탄화 온도가 높아질수록 반탄의 수득률이 감소함으로 적절한 반탄화 온도가 요구되었다. $250^{\circ}C$에서의 반탄화로는 헤미셀룰로오스의 분해가 상당히 진행되고 $300^{\circ}C$에서는 셀룰로오스의 분해까지도 거의 진행됨을 OPF의 열분해 거동으로부터 알 수 있었다. 또한, 반탄화된 OPF는 바이오매스의 grindability를 향상시킴으로 분쇄에 소모되는 에너지를 감소시킴을 예측할 수 있었다.

일본잎갈나무와 현사시나무를 이용한 브리켓의 제조 (Briquetting from Japanese larch and Hyunsasi poplar)

  • 한규성;김연일;문경태
    • Journal of the Korean Wood Science and Technology
    • /
    • 제40권1호
    • /
    • pp.1-9
    • /
    • 2012
  • 바이오매스로부터의 고밀화연료는 북미와 유럽에서 신재생에너지로서 널리 이용되고 있다. 본 연구에서는 일본잎갈나무와 현사시나무를 피스톤 프레스를 이용하여 브리켓을 제조하였으며, 연료적 특성 및 고밀화 특성을 밝히고자 압력, 가압시간, 수종 및 목분 크기가 브리켓의 특성에 미치는 영향을 조사하였다. 상온에서 110~170 MPa의 압력을 가해 제조된 일본잎갈나무와 현사시나무 브리켓의 4주간 경과 후의 밀도는 0.66~0.94 g/$cm^3$이고, 적정 가압시간은 12초이며, 제조 압력이 증가하면 브리켓의 밀도는 직선적으로 증가하였다. 일본잎갈나무 브리켓이 현사시나무 브리켓보다 밀도가 컸으며, 목분의 크기가 클수록 브리켓의 밀도가 컸다.

자연기반해법의 에너지원으로서 P-MFC 활용을 위한 연구경향 분석 - VOSviewer를 활용한 동시 출현단어 분석 중심으로 - (Analysis of research trends for utilization of P-MFC as an energy source for nature-based solutions - Focusing on co-occurring word analysis using VOSviewer -)

  • 권미리;반권수
    • 한국습지학회지
    • /
    • 제26권1호
    • /
    • pp.41-50
    • /
    • 2024
  • 식물 미생물 연료전지(P-MFC)는 식물과 근계의 미생물 군집에서 전기를 생성하는 바이오매스 활용 에너지 기술로 지속가능한 환경을 고려하는 자연기반해법의 적정기술이다. 국내 수변공간에 적합한 P-MFC 기술 개발을 위해서는 국제적인 연구 동향에 대한 분석이 선행되어야 할 필요가 있다. 이에 따라 본 연구에서는 Web of Science에서 조회되는 P-MFC 관련 연구논문 총 700편을 대상으로 동시 출현단어 분석 프로그램인 VOSviewer을 사용해 핵심 키워드를 도출하고 연구 동향을 분석하였다. 분석 결과, 첫째, P-MFC 관련 연구는 1998년부터 지속적으로 증가하고 있으며 특히 2010년대 중후반부터 크게 증가 추세에 있다. 국가별 논문 투고 수는 '중국'-'미국'-'인도' 순으로 가장 많았으며 2010년대 이후 P-MFC에 관해 관심이 커지기 시작해 수변공간과 습지 환경이 풍부한 필리핀, 우크라이나, 멕시코 등의 나라에서도 게재 수가 늘어나고 있는 것으로 나타났다. 둘째, 기간별 연구 경향의 경우, 1998년~2015년에는 다양한 환경에서 미생물 연료전지의 성능 검증에 대한 연구가 주를 이루었다. 2016년~2020년에는 미생물 연료전지 사용의 구체적인 조건, P-MFC의 구조 및 발전 방식과 관련된 연구가 주를 이루었다. 2021년~2023년에는 P-MFC 발전 과정의 제약 요소와 효율성 향상을 위한 구체적인 연구가 주로 진행되었다. 본 연구를 통해 파악된 P-MFC 관련 국제적 연구 동향은 향후 국내 수변공간에 적합한 기술 개발 시 유용한 자료로 사용될 수 있을 것이다. 향후 본 연구 외에 세부 분야별 연구 동향 및 수준에 대해서도 추가적인 연구가 필요하며 국내에서 P-MFC 기술의 발전과 활성화를 위해서는 현장 적용성에 대한 연구 확대와 정책, 제도적 개선도 병행되어야 할 것이다.

산업단지 내 CHP Hybrid System 최적화 모델에 관한 연구 (Optimization Process Models of Gas Combined Cycle CHP Using Renewable Energy Hybrid System in Industrial Complex)

  • 오광민;김래현
    • 에너지공학
    • /
    • 제28권3호
    • /
    • pp.65-79
    • /
    • 2019
  • 본 연구는 산업단지 내 Gas Combined Cycle CHP와 연계 가능한 신재생에너지원을 조합하여 최적의 설비용량을 산정하고자 하였다. 특히 2013~2016년도 에너지사용계획 협의 대상 산업단지 중 집단에너지 공급대상 지역지정 연료사용량 요건은 연간 3.8만 TOE로 미달되지만, 열밀도가 $92.6Gcal/km^2{\cdot}h$로 높은 세종첨단일반산업단지를 연구 대상으로 하였다. 그리고 신재생에너지 Hybrid System 경제성 분석 프로그램인 HOMER Pro를 이용하여 연료전지와 태양광발전을 연계한 FC-PV Hybrid CHP System의 최적화 운영 모델에 대해 분석하였다. 또 CHP의 주 공급 에너지원인 열에너지에 있어, 열수요량 뿐만 아니라 우점 업종에 대한 열수요 패턴을 분석하여 연구의 신뢰도를 높이고자 하였으며, 경제성 분석을 추가하여 상대적 편익을 비교하고자 하였다. 연구 결과, 신규 조성 중인 세종첨단일반산업단지의 전체 간접열 수요는 연간 378,282 Gcal이며, 이중 제지업종이 연간 293,754 Gcal인 약 77.7%를 우점하고 있었다. 산업단지 전체 간접열 수요에 대해 단일 Combined Cycle CHP의 최적 설비용량은 30,000 kW로, 이때 열생산은 CHP가 275,707 Gcal, 72.8 %를 분담하고, 첨두부하보일러 PLB가 103,240 Gcal, 27.2 %를 분담하는 것으로 분석되었다. 그리고 CHP와 연료전지, 태양광 조합에서는 최적 설비용량이 각 30,000 kW, 5,000 kW, 1,980 kW이며, 이때 열생산은 Combined Cycle CHP가 275,940 Gcal, 72.8%, 연료전지가 12,390 Gcal, 3.3%, PLB가 90,620 Gcal, 23.9%를 분담하였다. 여기서 CHP 용량이 감소하지 않은 것은, CHP 용량 감소에 따른 부족한 열 생산량에 대해 PLB의 과다한 운전이 요구되는 경제적이지 못한 대안이 도출되었기 때문이었다. 한편 우점 업종인 제지업종의 간접열 수요에 대해서는 Combined Cycle CHP, 연료전지, 태양광 조합의 최적 설비용량은 25,000 kW, 5,000 kW, 2,000 kW로, 이때 열생산은 CHP 225,053 Gcal, 76.5%, 연료전지 11,215 Gcal, 3.8%, PLB가 58,012 Gcal, 19.7%를 분담하는 것으로 분석되었다. 그러나, 현행 전력시장 및 가스시장에서의 경제성 분석결과는 모두 투자비 회수가 불가능한 것으로 확인 되었다. 다만, 우점 업종인 제지 업종만을 대상으로 CHP와 연료전지, 태양광을 조합한 CHP Hybrid System이 단일 CHP System에 대해 연간 약 93억원의 경영여건을 개선시킬 수 있음을 확인하였다.

인 결핍에 따른 하수배양 미세조류의 지방산 특성 분석 연구 (Effects of Phosphorus Starvation on Fatty Acid Production by Microalgae Cultivated from Wastewater Environment)

  • 우성근;박준홍
    • 대한토목학회논문집
    • /
    • 제32권4B호
    • /
    • pp.253-259
    • /
    • 2012
  • 하수에서 배양된 미세조류인 Chlorella vulgaris AG10032, Ankistrodesmus gracilis SAG278-2, Scenedesmus quadricauda AG10308은 오폐수에서 질소 및 인 제거가 우수하고 높은 지질을 함유하고 있어서, 오폐수에서 바이오연료나 기타 바이오 기반의 자원 회수에 유용한 생물자원이다. 오폐수 환경에는 다양한 인의 농도가 존재하는데, 인의 농도 특히 인 결핍조건에 따른 조류의 지방산 특성에 대한 정보가 매우 제한적이다. 이는 표준 분석방법이 정립되어 있지 않은데 일부 기인한다. 본 연구에서는 미생물의 지방산을 분석하는데 일반적으로 사용되는 무극성 컬럼법과 식물성 지질을 분석하는데 널리 사용되는 극성 WAX-type 컬럼 GC-FID 방법의 미세조류 지방산 분석 성능을 비교 분석하였고, 하수배양 조류에 적용이 보다 적절한 방법을 이용해서 인 결핍에 의한 조류 지방산 생성특성에 미치는 영향을 평가하였다. 그 결과 무극성 컬럼 방법에 비해 극성 WAX-type 컬럼 GC 방법이 $C_{18:3}$ 지방산과 같은 고불포화지방산을 규명하는 분석능력이 우수하였고, 실제 하수배양에서 배양 분리된 미세조류의 지방산 분석에 보다 정확한 결과를 보이었다. 이 WAX-type 컬럼 방법으로 인 결핍 영향을 분석한 결과, 미세조류의 지방산 조성과 생성량은 인의 농도 변화에 크게 영향을 받지 않음을 밝히었다.

바이오가스 정제 및 고질화 기술 현황 및 전망 (The Present and the Future of Biogas Purification and Upgrading Technologies)

  • 허남효;박재규;김기동;오영삼;조병학
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2011년도 춘계학술대회 초록집
    • /
    • pp.172-172
    • /
    • 2011
  • Anaerobic digestion(AD) has successfully been used for many applications that have conclusively demonstrated its ability to recycle biogenic wastes. AD has been successfully applied in industrial waste water treatment, stabilsation of sewage sludge, landfill management and recycling of biowaste and agricultural wastes as manure, energy crops. During AD, i.e. organic materials are decomposed by anaerobic forming bacteria and fina1ly converted to excellent fertilizer and biogas which is primarily composed of methane(CH4) and carbon dioxide(CO2) with smaller amounts of hydrogen sulfide(H2S) and ammonia(NH3), trace gases such as hydrogen(H2), nitrogen(N2), carbon monoxide(CO), oxygen(O2) and contain dust particles and siloxanes. The production and utilisation of biogas has several environmental advantages such as i)a renewable energy source, ii)reduction the release of methane to the atomsphere, iii)use as a substitute for fossil fuels. In utilisation of biogas, most of biogas produced from small scale plant e.g. farm-scale AD plant are used to provide as energy source for cooking and lighting, in most of the industrialised countries for energy recovery, environmental and safety reasons are used in combined heat and power(CHP) engines or as a supplement to natural. In particular, biogas to use as vehicle fuel or for grid injection there different biogas treatment steps are necessary, it is important to have a high energy content in biogas with biogas purification and upgrading. The energy content of biogas is in direct proportion to the methane content and by removing trace gases and carbon dioxide in the purification and upgrading process the energy content of biogas in increased. The process of purification and upgrading biogas generates new possibilities for its use since it can then replace natural gas, which is used extensively in many countries, However, those technologies add to the costs of biogas production. It is important to have an optimized purification and upgrading process in terms of low energy consumption and high efficiency giving high methane content in the upgraded gas. A number of technologies for purification and upgrading of biogas have been developed to use as a vehicle fuel or grid injection during the passed twenty years, and several technologies exist today and they are continually being improved. The biomethane which is produced from the purification and the upgrading process of biogas has gained increased attention due to rising oil and natural gas prices and increasing targets for renewable fuel quotes in many countries. New plants are continually being built and the number of biomethane plants was around 100 in 2009.

  • PDF

바이오에탄올 회수를 위한 에너지 절약형 공비증류공정과 추출증류공정 (Process Design of Low Energy Azeotropic and Extractive Distillation Process for Bioethanol Recovery)

  • 김종환;이덕형;홍성규;박상진
    • Korean Chemical Engineering Research
    • /
    • 제46권2호
    • /
    • pp.348-355
    • /
    • 2008
  • 청정대체에너지로 관심이 고조되고 있는 바이오에탄올의 경제적 생산은 고유가시대에 있어 매우 중요하다. 본 연구에서는 곡물의 주정발효를 통해 얻어진 바이오 에탄올의 회수공정에 대하여 공장설계를 위한 열역학적 해석을 통해 신뢰성 있는 공정모사결과를 얻을 수 있도록 하고, 본 모델을 통하여 매우 성공적으로 운전이 되어 제품을 생산할 수 있고 향후 공정개선에 대한 기초를 마련했다. 연료용 무수에탄올 생산 공정은 실제공정에서 사용되고 있는 기술은 공비증류, 추출증류, 압력스윙 흡착공정 등이 있다. 본 연구에서는 추출증류 공정에 대한 공정모사를 통해 경제성 및 영향성을 평가해보았다. 에틸렌글리콜을 이용한 추출증류에 대한 공정연구는 매우 에너지 효율적이고 무수에탄올 생산에 있어 에틸렌글리콜을 이용한 추출증류는 발효 불순물의 영향을 받지 않음을 확인할 수 있었다. 이는 공비증류와 비교할 때 가장 큰 차이를 보이는 것으로 무수에탄올 회수에 있어 다양한 구성이 가능하며, 에탄올의 회수율을 극대화할 수 있다는 장점을 갖는다. 또한 공비를 제거하기위한 에틸렌글리콜 등의 첨가제는 공정의 성분들과 끓는점의 차이가 높고 서로의 용해도가 낮아서 공정중에 거의 100% 회수가 가능한 특징을 있고 공비증류에 비해 매우 환경친화적이다. 한편 개발된 공정에서는 매우 낮은 에너지(1.37198 kg steam/kg anhydride ethanol from 3.05 mol% ethanol)로 99.85%의 무수에탄올을 생산할 수 있으며, 본 연구의 결과 발효된 원료로부터의 무수에탄올의 생산은 공비를 제거하기위한 agent의 선택도 중요한 사항으로 첨가제에 따른 효율이나 에너지 필요량을 알아보았고 공정의 에너지를 절약하기 위해 공정을 효율적으로 구성하여 열회수를 극대화 할 수 있었다.

낙엽송(Larix kaempferi) 고밀도 에너지화를 위한 반탄화 최적조건 탐색 (Optimal Condition of Torrefaction for the High-density Solid Fuel of Larch (Larix kaempferi))

  • 나병일;안병준;조성택;이재원
    • Korean Chemical Engineering Research
    • /
    • 제51권6호
    • /
    • pp.739-744
    • /
    • 2013
  • 본 연구에서는 낙엽송의 연료특성 향상을 위해 반탄화를 수행하였으며 반응표면분석에 의해 반탄화 최적조건을 탐색하였다. 반탄화는 반응온도($220{\sim}280^{\circ}C$)와 반응시간(20~80분)에 따라 수행하였다. 반탄화 온도가 증가할수록 처리된 바이오매스의 탄소함량은 49.36%에서 56.65%로 증가한 반면, 수소와 산소의 함량은 각각 5.56%에서 5.48%, 37.62%에서 31.67%로 감소하였다. 반탄화 처리 후 바이오매스의 중량감소율 및 발열량은 반탄화 정도(SF)에 따라 증가하였다. 가장 높은 반탄화 정도(SF 7)에서 26.58%의 중량감소율을 나타났으며, 발열량은 22.30 MJ/kg으로 처리 전 바이오매스와 비교하여 20.41% 증가하였다. 에너지수율은 반탄화 정도(SF)가 높아질수록 감소하는 경향을 나타냈으며, 높은 발열량 증가와 낮은 중량감소율에서 가장 높은 에너지수율을 나타냈다(SF 5.72).