• Title/Summary/Keyword: 바이오연료

Search Result 683, Processing Time 0.03 seconds

Biofuel Industry and Recent Research in USA (미국의 바이오연료와 연구 동향)

  • Lee, Joung-Kyong;Bransby, David
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.28 no.2
    • /
    • pp.129-138
    • /
    • 2008
  • Demand for alternatives to petroleum is increasing the production of biofuels from food crops such as corn, soybeans, sorghum and sugarcane, etc. At least for the next 5 years, ethanol demand will be increased greatly in the United States and in the world. Presently, most ethanol produced in the United States is corn (Zea mays) ethanol. As a result, especially in the Americas and Southeast Asia, agricultural land is diverted to biofuel production. Even though biofuel industry has many advantage including national security, economical, energetical and sustainable impacts, it is driving grain prices up and creating considerable concern about the potential negative impacts on a wide range of food products that depend on gain : chicken, pork, beef, and dairy products such as milk, cheese, yoghurt, cream and ice cream. Feedstock crops are crops such as switchgrass(Panicum virgatum, L.), corn stover and grasses that can be used in industrial processes such as fermentation into alcohol fuels. Feedstock is no compete with food. Furthermore it is friendly environmental bioenergy crops. In Korea, with increasing demand for fossil fuels the exploration of alternative sources of liquid fuel is inevitable. I suggest Korea need to research and to develop actively on feedstock for biofuel production through this review.

Particle emission characteristics of gasoline and bio ethanol blend in the engine and vehicle mode test (가솔린과 바이오 에탄올 혼합 연료의 엔진 및 차량 모드 주행시의 입자상 물질 배출 특성)

  • Ko, A-Hyun;Lee, Hyung-Min;Choi, Kwan-Hee;Park, Sim-Soo;Lee, Young-Jae
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.3102-3107
    • /
    • 2008
  • This paper was focused on the particulate matter (PM) on the gasoline and bio ethanol. Bio ethanol as a clean fuel is considered one of the alternative fuels that decreased the PM emission from the vehicle. Particle formation in SI engine was depended on the fuel and engine operating condition. In this paper, Particle number concentration behaviors were analyzed by DMS500 (Differential Mobility Spectrometer) and CPC (Condensation Particle Counter) instrument which was recommended by PMP (Particle Measurement Programme). Particle emissions were measured with various engine operating variables such as air excess ratio ($\lambda$), spark timing and intake valve opening (IVO) at part load condition. In vehicle test, the number of particulate matter was analyzed with golden particle measurement system, which was consist of CVS (Constant Volume Sampler), particle number counter and particle number diluter.

  • PDF

Higher Production of Biolipids from Botryococcus braunii using Pre-treated Solvent Extraction Methods (해양생물 Botryococcus braunii에서 유래한 바이오연료의 고급생산기술: 전처리 용매추출법)

  • Kwon, Sung-Hyun;Cho, Daechul
    • Journal of Environmental Science International
    • /
    • v.28 no.11
    • /
    • pp.927-933
    • /
    • 2019
  • A lipid-enriched strain of Botryococcus braunii (UTEX 572) was cultivated in a semi-batch aeration tank to enhance biomass as well as to develop intracellular lipids and fatty acids. A 30 day period of incubation produced 1.39 g/L of biomass and 0.31 g/L of total lipids in the biomass. The grown biomass was pre-treated using several methods to extract the total lipid content efficiently: ultrasonication was found to yield the highest percentage of lipids-namely 19.8% per biomass. Direct heating of biomass in an autoclave also showed better performance than when using only conventional solvent extraction. To enhance the biomass harvest and lipid extraction efficiency, coagulation and flocculation steps were added to the extraction process. It is noteworthy that not only the solvent type but also the solvent/biomass ratio greatly affected efficiency. In addition, the moisture content of the harvested(wet) biomass affected the efficiency significantly. This study elucidated the need for future research on optimizing this extraction process.

Study on the Pressurized Steam Reforming of Natural Gas and Biogas Mixed Cokes Oven Gas (코크스오븐가스 기반 천연가스, 바이오가스가 혼합된 연료의 가압 수증기 개질 반응에 관한 연구)

  • CHEON, HYUNGJUN;HAN, GWANGWOO;BAE, JOONGMYEON
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.30 no.2
    • /
    • pp.111-118
    • /
    • 2019
  • Greenhouse gas emissions have a profound effect on global warming. Various environmental regulations have been introduced to reduce the emissions. The largest amount of greenhouse gases, including carbon dioxide, is produced in the steel industry. To decrease carbon dioxide emission, hydrogen-based iron oxide reduction, which can replace carbon-based reduction has received a great attention. Iron production generates various by-product gases, such as cokes oven gas (COG), blast furnace gas (BFG), and Linz-Donawitz gas (LDG). In particular, COG, due to its high concentrations of hydrogen and methane, can be reformed to become a major source of hydrogen for reducing iron oxide. Nevertheless, continuous COG cannot be supplied under actual operation condition of steel industry. To solve this problem, this study proposed to use two alternative COG-based fuel mixtures; one with natural gas and the other with biogas. Reforming study on two types of mixed gas were carried out to evaluate catalyst performance under a variety of operating conditions. In addition, methane conversion and product composition were investigated both theoretically and experimentally.

Electrical Energy Production Using Biomass (바이오매스 기반 전기에너지 생산기술 동향 분석)

  • Jongseo Lee;Sang-Soo Han;Doyeun Kim;JuHyun Kim;Sangjin Park
    • New & Renewable Energy
    • /
    • v.19 no.1
    • /
    • pp.12-21
    • /
    • 2023
  • Governments and global companies are working towards using renewable sources of energy, such as solar, wind, and biomass, to reduce dependency on fossil fuels. In the defense sector, the new strategy seeks to increase the sustainable use of renewable energy sources to improve energy security and reduce military transportation. Renewable energy technologies are affected by factors such as climate, resources, and policy environments. Therefore, governments and global companies need to carefully select the optimal renewable energy sources and deployment strategies. Biomass is a promising energy source owing to its high energy density and ease of collection and harvesting. Many techniques have been developed to convert the biomass into electrical energy. Recently, diverse types of fuel cells have been suggested that can directly convert the chemical energy of biomass into electrical energy. The recently developed biomass flow fuel cell has significantly enhanced the power density several hundred times, reaching to ~100 mW/cm2. In this review, we explore various strategies for producing electrical energy from biomass using modern methods, and discuss the challenges and potential prospects of this method.

Process gas purification using cyclone recirculation and cooling process (싸이클론 재순환, 냉각공정을 이용한 공정가스 정제 연구)

  • Kim, Ju-Hoe;Jo, Woo-Jin;Choi, Young-Tae;Jo, Young-Min;Kim, Sang-Bum
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.1
    • /
    • pp.25-33
    • /
    • 2018
  • Renewable energy has been of interests in the area of modern alternative fuels. Biogas is produced in waste landfill sites through anaerobic digestion processes, including hydrolysis, acidogenesis, organic acid fermentation (acetogenesis), and methane fermentation (methanogenesis). High contents of fine dust and moisture limited its utilization for direct combustion, town gas and vehicle fuel. Thus, this study proposed a new design for a cooling device using a centrifugal cyclone for simultaneous removal of fine dust and moisture as a pretreatment in the purification processes. A heat exchanger and an ID fan, which are installed inside and outside of the cyclone, in order to cool the humid gas below the freezing point and form a foggy mist. Such an atmosphere enhanced to capture fine dust as recirculating the cold mist flow. The water removal rate was 80.8% at a relative humidity of 95%, and the particle removal efficiency was 98.3% for $2.5{\mu}m$. Simultaneous removal efficiency was 70.8% and 99.6% for particle and moisture respectively.

Study of Lubrication and Oxidation Stability as Mixture Ratio of FAMEs in Lubricating Base Oil (윤활기유 내 지방산메틸에스테르 혼합비율에 따른 윤활특성 및 산화안정성 연구)

  • Kim, Shin;Yim, Eui-Soon;Jung, Choong-Sub;Na, Byung-Ki
    • Journal of the Korean Applied Science and Technology
    • /
    • v.30 no.4
    • /
    • pp.715-725
    • /
    • 2013
  • FAMEs produced from vegetable oil via transesterification reaction were known as alternative fuels. Lubrication and Wear properties of FAMEs were investigated to confirm the alternative possibility as lubricating base oil. In this study, lubrication properties and physical characteristics of mixture oils were examined using blended FAMEs(soybean, palm, waste oils) in two kinds of lubricating base oils. The oxidation stability of mixed samples were analyzed using ASTM D 2272 method and investigated for oxidation states of mixture oils after the shell four ball test. The results showed that the increase of FAMEs contents improved lubrication due to the intrinsic characteristics, however, increased the contents of oxidation which deteriorate the lubrication, and we found optimum mixture ratio as results of each base biodiesel (FAME).

Steam Gasification Characteristics of Wood Pellet (우드펠릿의 스팀가스화 특성)

  • Hwang, Hoon;Lee, Moon-Won;Choi, Sun-Yong;Kim, Lae-Hyun
    • Journal of Energy Engineering
    • /
    • v.19 no.4
    • /
    • pp.215-220
    • /
    • 2010
  • Hydrogen is a clean and efficient energy source and is expected to take an important role in future energy demand. A possibly good route to produce hydrogen is by using biomass and organic wastes as a source through thermo-chemical conversion technology. In this study, pyrolysis of wood Pellet(Oregon pine) has been carried out in batch type fixed-bed reactor in $N_2$ atmosphere during 20 minutes to determine the optimum hydrogen generating conditions. At the influence of temperature, hydrogen yield was increased with increasing temperature. For the influence of Steam/Biomass Ratio(SBR), hydrogen yield was increased by steam addition at low temperature condition. However, effect of steam addition was insignificant over at SBR = 1. The hydrogen yield was increased with increasing SBR at high temperature condition. From result of $H_2$/CO and $H_2/CH_4$ ratio, dominant reaction was steam reforming in this experimental condition. The optimum condition for hydrogen production was determined as follows: $H_2$ yield = 38.3 vol.% (56.01 L/min kg) at $900^{\circ}C$, SBR=3.

Fuel Properities of Spent Coffee Bean by Torrefaction (반탄화에 의한 커피박 연료특성)

  • Oh, Dohgun;Kim, Yonghyun;Son, Hong-Seok
    • New & Renewable Energy
    • /
    • v.9 no.3
    • /
    • pp.29-35
    • /
    • 2013
  • This research analyzed the fuel characteristic change of spent coffee bean by torrefaction. The calorific value was increased from 4,974 kcal/kg to 6,075 kcal/kg ($260^{\circ}C$, 30min), 6,452 kcal/kg ($270^{\circ}C$, 30min), 6,823 kcal/kg ($280^{\circ}C$, 30min), 6,970 kcal/kg ($260^{\circ}C$, 30min). The highest energy yield was obtained when the spent coffee bean were torrefied on the condition of $280^{\circ}C$, 30min. The moisture absorption rate was decreased from 5.12% to 2.76% when the spent coffee bean were torrefied on the condition of $290^{\circ}C$, 30min. Lignin was increased from 11.33% to 14.39% on the condition of $260^{\circ}C$ 30min. But it did not preferability to torrefy spent coffee bean at temperature of more than $270^{\circ}C$ because lignin decreases to the level that is hard to make pellet.

A Study on the Manufacture of Bio-SRF from the Food Waste by Hydrothermal Carbonization (HTC) Process (열수가압탄화 공정에 의한 음식물폐기물로부터의 Bio Solid Reuse Fuel (Bio-SRF) 연료제조에 관한 실증연구)

  • HAN, DANBEE;YEOM, KYUIN;PARK, SUNGKYU;CHO, OOKSANG;BAEK, YOUNGSOON
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.28 no.4
    • /
    • pp.426-432
    • /
    • 2017
  • Hydrothermal carbonization (HTC) is an effective and environment friendly technique; it possesses extensive potential towards producing high-energy density solid fuels. it is a carbonization method of thermochemical process at a relatively low temperature ($180-250^{\circ}C$). It is reacted by water containing raw material. However, the production and quality of solid fuels from HTC depends upon several parameters; temperature, residence time, and pressure. This study investigates the influence of operating parameters on solid fuel production during HTC. Especially, when food waste was reacted for 2 hours, 4 hours, and 8 hours at $200^{\circ}C$ and 2.0-2.5 MPa, Data including heating value, proximate analysis and water content was consequently collected and analyzed. It was found that reaction temperature, residence time are the primary factors that influence the HTC process.