Browse > Article
http://dx.doi.org/10.5322/JESI.2019.28.11.927

Higher Production of Biolipids from Botryococcus braunii using Pre-treated Solvent Extraction Methods  

Kwon, Sung-Hyun (Department of Marine Environmental Engineering, Gyeongsang National University)
Cho, Daechul (Department of Energy & Environmental Engineering, Soonchunhyang University)
Publication Information
Journal of Environmental Science International / v.28, no.11, 2019 , pp. 927-933 More about this Journal
Abstract
A lipid-enriched strain of Botryococcus braunii (UTEX 572) was cultivated in a semi-batch aeration tank to enhance biomass as well as to develop intracellular lipids and fatty acids. A 30 day period of incubation produced 1.39 g/L of biomass and 0.31 g/L of total lipids in the biomass. The grown biomass was pre-treated using several methods to extract the total lipid content efficiently: ultrasonication was found to yield the highest percentage of lipids-namely 19.8% per biomass. Direct heating of biomass in an autoclave also showed better performance than when using only conventional solvent extraction. To enhance the biomass harvest and lipid extraction efficiency, coagulation and flocculation steps were added to the extraction process. It is noteworthy that not only the solvent type but also the solvent/biomass ratio greatly affected efficiency. In addition, the moisture content of the harvested(wet) biomass affected the efficiency significantly. This study elucidated the need for future research on optimizing this extraction process.
Keywords
Botryococcus braunii; Biolipid production; Pre-treated solvent extraction; Semi-batch cultivation;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Bajpai, P., Bajpai, P. K., 1993, Eicosapentaenoic acid (EPA) production from icroorganisms: a review, J. Biotechnol., 30(2), 161-183.   DOI
2 Balachanolran, K., Nagamany, N., 2012, Feasibility of microalgal cultivation in a pilot-scale airlift-driven raceway reactor, Bioresour. Technol., 108, 196-202.   DOI
3 Brennan, L., Owende, P., 2010, Biofulels from microalgae-a review of technologies for production, processing, and extractions of biofuels and co-products, Renew. Sust. Energ. Rev., 14, 557-577.   DOI
4 Chaiklahan, R., Chirasuwan, N., Loha, V., Bunnag, B., 2008, Lipid and fatty acids extraction from the Cyanobacterium spirulina, Sci. Asia, 34, 299-300.   DOI
5 Cooney, M., Young, G., Nagle, N., 2009, Extraction of Bio-oils from microalgae. Sep. Purif. Rev., 38, 291-325.   DOI
6 Cui, Y., Rashida, N., Huc, N., Rehman, M. S. U., Han, J., 2014, Electricity generation and microalgae cultivation in microbial fuel cell using microalgae-enriched anode and bio-cathode, Energy Convers Manage., 79, 674-680.   DOI
7 Endo, H., Hosoya, H., Koibuchi, T., 1977, Growth yields of Chlorella regularis in dark-heterotrophic continuous cultures using acetate., J. Ferment. Technol., 55, 369-370.
8 Griffiths, M. J., Van Hille, R. P., Harrison, S. T. L., 2012, Lipid productivity, settling potential and fatty acid profile of 11 microalgal species grown under nitrogen deplete and limited conditions, J. Appl. Phycol., 24, 989-1001.   DOI
9 Hossain, A. B. M. S., Salleh, A., 2008, Biodiesel fuel production from algae as renewable energy, Am. J. Biochem, Biotechnol., 4, 250-254.   DOI
10 Grima, E. M., Camacho, F. G., Perez, J. A. S., 1994, Biochemical productivity and fatty acid profiles of Isochrysis galbana Parke and Tetraselmis sp. as a function of incident light intensity, Process Biochemistry, 29(2), 119-126.   DOI
11 Huerlimann, R., Heimann, K., De Nys, R., 2010, Growth, lipid content, productivity, and fatty acid composition of tropical microalgae for scale-up production, Biotechnol. Bioeng., 107, 245-257.   DOI
12 Lee, S. J., Kim, S. B., Kim, J. E., Kwon, G. S., Yoon, B. D., Oh, H. M., 1998, Effects of harvesting time and growth stage on the flocculation of the green alga Botryococcus braunii, Lett. Appl. Microbiol., 27, 14-18.   DOI
13 Janssen, M., Tramper, J., Mur, L. R., Wijffels, R. H., 2003, Enclosed outdoor photobioreactors: light regime, photosynthetic efficiency, scale-up, and future prospects, Biotechnol. Bioeng., 81, 193-210.   DOI
14 Kosaric, N., Velikonja, J., 1995, Liquid and gaseous fuels from biotechnology: Challenge and opportunities, FEMS Microbiol. Rev., 16, 111-142.   DOI
15 Kwon, S. H., Lee, E., Cho, D., 2012, Optimal culturing and enhancement of lipid accumulation in a microalga Botryococcus braunii, J. Environ. Sci. Int., 21(7), 779-785.   DOI
16 Lee, S. J., Yoon, B D., Oh, H. M., 1998, Rapid method for the determination of lipids from the green alga Botryococcus braunii, Biotechnol. Tech., 12, 553-556.   DOI
17 Rashid, N., Rehman, S. U., Han, J. I., 2013, Rapid harvesting of fresh water microalgae using poly-glucosamine, Proc. Biochem., 48, 1107-1110.   DOI
18 Metzger, P., Largeau, C., 2005, Botryococcus braunii: a rich source for hydrocarbons and related ether lipids, Appl. Microbiol. Biotechnol., 66, 486-496.   DOI
19 Pokoo-Aikins, G., Heath, A., Mentzer, R. A., Sam Mannan, M., Rogers, W. J., El-Halwagi, M. M., 2010, A Multi-criteria approach to screening alternatives for converting sewage sludge to biodiesel, J. Loss Prev. Proc. Indus., 23, 412-420.   DOI
20 Rao, R. K., Arnold, L. K., 1958, Alcoholic extraction of vegatable oils, pilot plant extraction of cotton seed by agueous ethanol., J. Am. Oil Chem. Soc., 35, 277-281.   DOI
21 Udman, N., Qi, Y., Danquah, M. K., Forde G. M., Hoadly A., 2010, Dewatering of microalgal cultures: A major bottleneck to algae-based fuels, J. Renew. Sust. Energ., 2, 012701.   DOI
22 Siddiguee, M. N., Rohan, S., 2011, Lipid extraction and biodiesel production from municipal sewage sludges: a review, Renew. Sust. Energy Rev., 15, 1067-1072.   DOI
23 Singh, J., Gu, S., 2010, Commercialization potential of microalgae for biofuel production, Renew. Sust. Energy Rev., 14, 2596-2610.   DOI
24 Ting, C., Stephen, Y. P., Ratanachat, R., Yebo, L., 2013, Cultivation of Nannochloropsis salina using aerobic digestion effluent as a nutrient source for biofuel production, Appl. Energy, 108, 486-492.   DOI
25 Ugwu, C. U., Aoyagi, H., Uchiyama, H., 2008, Photobioreactors for mass cultivation of algae, Bioresour. Technol., 99, 4021-4028.   DOI
26 Xu, H., Miao, X., Wu, Q., 2006, High quality biodiesel production from a microalga Chlorella protothecoides by heterotrophic growth in fermenters, J. Biotechnol., I26(4), 449-507.
27 Wolf, F. R., Nonomura, A. M., Bassham, J. A., 1985, Growth and branched hydrocarbon production in a strain of Botryococcus braunii(Chlorophyta), J. Phycol., 21, 388-396.   DOI
28 Xiao, M, Shin, H. J., Dong, Q., 2013, Advances in cultivation and processing techniques for microalgal biodiesel: A review, Korean J. Chem. Eng., 30, 2119-2126.   DOI