• Title/Summary/Keyword: 바이오매스 플라이애시

Search Result 4, Processing Time 0.023 seconds

Properties of Non-cement Matrix Using Biomass Fly Ash (바이오매스 플라이애시를 활용한 무시멘트 경화체의 특성)

  • Kim, Dae-Yeon;Lee, Sang-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2020.06a
    • /
    • pp.185-186
    • /
    • 2020
  • This study In order to reduce the amount of cement that generates a large amount of carbon dioxide and attempts to find a recycling method to solve environmental problems by using biomass fly ash. Experiments were conducted according to replacement ratio of biomass fly ash based on GGBFS, The test items are flowability, air content, unit volume weight, water absorption, flexural strength and compressive strength. As a result of the experiment, as increased replacement ratio of biomass fly ash, the flowability and air content was increased. As increased replacement ratio, the density was decreased and water absorption was increased. The compressive strength tended to decrease as increased replacement ratio. The flexural strength tended to increased as increased replacement ratio.

  • PDF

Physical Properties of Matrix with Replacement Ratio of Biomass Fly Ash Based on Cement (시멘트 기반 바이오매스 플라이애시 치환율에 따른 경화체의 물리적 특성)

  • Kim, Dae-Yeon;Cho, Eun-Seok;Lee, Sang-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2019.05a
    • /
    • pp.209-210
    • /
    • 2019
  • Current international concerns are the energy crisis due to climate change and depletion of fossil fuels due to global warming. Korea has a very high dependency on energy imports 93%. In Korea, 63% of the country is forested, and a power plant using wood biomass is being built in Korea. Biomass fly ash, a by-product of biomass energy generation, is now being discarded. There is little research to utilize discarded biomass fly ash. Therefore, this study aims to solve the environmental problems, develop new mixed materials, improve the quality and utilize the biomass fly ash, which is a by-product of the industrial waste. As a result of the experiment, the flowability decreased as the replacement ratio of biomass fly ash increased. As the replacement ratio of biomass fly ash decreased, the amount of air content.

  • PDF

Physical Properties of Matrix using Biomass Fly Ash an Industrial By-product (산업부산물인 바이오매스 플라이애시를 활용한 경화체의 물리적 특성)

  • Kim, Dae-Yeon;Cho, Eun-Seok;Lee, Sang-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2019.11a
    • /
    • pp.21-22
    • /
    • 2019
  • In order to prevent global warming according to fossil fuel use, countries around the world are making efforts through the Kyoto Protocol and the Paris Climate Change Convention. In addition, in order to prepare for high oil prices, researches such as the development of various renewable energy are being conducted. At present, the domestic production rate of energy sources in Korea is low at 18.1%, and power plants using forest biomass are being constructed to meet the domestic situation where 63% of the land is a forest. In 2015, the global production of wood pellets, a raw material for wood-based biomass power generation, was 28 million tons, up 7.7% from 2014, and has increased tenfold over the last decade. This is a result of increased demand for biomass. Korea is also increasing every year. However, biomass fly ash, an industrial by-product generated by biomass energy generation, is now being disposed of entirely, and there is little research to utilize it. Therefore, this paper will use biomass fly ash, an industrial by-product, which is currently being discarded due to a lack of separate treatment methods, as an admixture concept to contribute to solving environmental problems, developing new admixtures, improving quality, and seeking recycling plans.

  • PDF

Investigative Analysis of By-products from Lignocellulosic Biomass Combustion and Their Impact on Mortar Properties (목질계 바이오매스 연소부산물 분석과 모르타르 혼입 평가)

  • Jung, Young-Dong;Kim, Min-Soo;Park, Won-Jun
    • Journal of the Korea Institute of Building Construction
    • /
    • v.23 no.6
    • /
    • pp.663-671
    • /
    • 2023
  • This research experimentally evaluated the recyclability of four varieties of lignocellulosic fly ash(FA), a by-product from three power plants employing lignocellulosic biomass(Bio-SRF, wood pellets) as a fuel source. Comprehensive analyses were conducted on FA, encompassing both physical parameters (particle shape, size distribution, fineness, and density) and chemical properties(chemical composition and heavy metal content). Mortar test specimens, with FA mixing ratios ranging from 5 to 20%, were produced in compliance with KS L 5405 standards, and their flow and compressive strength were subsequently measured. The test results indicated that the four types of FA exhibited particle sizes approximately between 20~30㎛, densities around 2.3~2.5g/cm3, and a fineness range of 2,600~4,900cm2/g. The FA comprised approximately 50~90% of components such as SiO2, Al2O3, Fe2O3, and CaO, displaying characteristics akin to type-II and type-III FA of KS L 5405 standards, albeit with differences in chlorine and SiO2 content. From the mortar tests, it was observed that the compressive strength of the mortar ranged between 34~47MPa when the pellet combustion FA was mixed in proportions of 5~20%. FA, produced exclusively from the combustion of 100% lignocellulosic fuel, is assessed to possess high recyclability potential as a substitute for conventional admixtures.