• 제목/요약/키워드: 바이오디젤특성

검색결과 244건 처리시간 0.025초

바이오디젤을 적용한 압축착화 엔진에서 EGR율에 따른 연소 및 미세입자 배출물 특성 (Combustion and Nano-particulate Emissions Characteristics of a Compression Ignition Engine Fueled with Biodiesel according to EGR Ratio)

  • 차준표;윤승현;이창식
    • 한국자동차공학회논문집
    • /
    • 제18권6호
    • /
    • pp.98-104
    • /
    • 2010
  • An experimental investigation was conducted to analyze the effects of EGR ratio on the combustion, exhaust emissions characteristics and size distributions of particulate matter in a single cylinder diesel engine with common-rail injection system fueled with biodiesel derived from soybean. In order to analyze the combustion, exhaust emissions and measurement of size distributions of particulate matter were carried out under various EGR ratio which was varied from 20~60% and the results were compared to those of results without EGR. The experimental results show that ignition delay was extended and maximum value of rate of heat release (ROHR) was decreased according to increasing of EGR ratio. In addition, oxidies of nitrogen ($NO_x$) emissions were reduced but soot emissions were increased under increasing of EGR ratio. However, under higher EGR ratio region, soot was slightly decreased. And then the particulate size distribution shows that high exhaust gas temperature restrain the formation of soluble organic fraction (SOF) which were beyond the accumulation mode (100~300nm) and lead to increase of nuclei mode particles.

저온 바이오디젤 연료의 연소특성에 관한 실험적 연구 (An Experimental Study on Combustion Characteristics when applied Bio-Diesel Fuel at Low Temperature)

  • 이성욱;이정섭;박영준;김득상;이영철;조용석
    • 한국분무공학회지
    • /
    • 제13권4호
    • /
    • pp.206-211
    • /
    • 2008
  • In this research, combustion and spray characteristics were investigated experimentally in a constant volume chamber by applying bio-diesel fuel to a common-rail system in which precise control is available for utilizing environmentally friendly properties of bio-diesel fuel. The experiment was conducted at fuel temperatures $20^{\circ}C$ and $-20^{\circ}C$ to investigate combustion characteristics of bio-diesel fuel provoking problems in fluidity specially in a low temperature. For the visualization, the experiment was carried out under various conditions of ambient pressure, injection pressure and fuel temperature. The test was made by three different types of diesel fuels, conventional diesel, BD20 and BD100. In summary, this research aims to investigate combustion characteristics in the application of bio-diesel fuels and compare the results with performance of conventional diesel fuel. This experimental data may provide fundamentals of spray and combustion of bio-diesel fuels at a low temperature and contribute to the development of bio-diesel engines in future.

  • PDF

경유 대체연료로서 수첨바이오디젤의 윤활 특성 연구 (Lubricity Characterization of Hydrogenated Biodiesel as an Alternative Diesel Fuel)

  • 김재곤;전철환;임의순;정충섭
    • Tribology and Lubricants
    • /
    • 제28권6호
    • /
    • pp.321-327
    • /
    • 2012
  • Paraffin bio-based hydrotreated biodiesel(HBD) is originated from vegetable oil(the process can also be applied to animal fat) with the the chemical structure $C_nH_{2n+2}$. In the number of process of the oil or fat, the hydrogenation is significantly important to create a bio-based diesel fuel. This study is focused on lubricity characteristics of BTL diesel blends to use alternative diesel fuel in Korea. The BTL diesel are blended the different volume ratios (HBD 5(5 vol.% HBD - 95 vol.% diesel), HBD 10, HBD 20, HBD 30, HBD 40 and HBD 50. HBD with paraffin compounds showed a very high centane number, low sulfur content and free aromatic compound. Especially, the wear scar of HBD showed poor lubricity compared to automotive diesel due to the fuel composition, low sulfur content and free aromatic compound. Also, the lubricity specification of automotive diesel with different six HBD blends is within the limit by the Korean standards. Finally, HBD as an alternative diesel fuel is challengeable in transportation sector of Korea.

바이오 디젤 연료의 고압 분무 특성 (Characteristics of High Pressure Bio-diesel Fuel Spray)

  • 홍창호;최욱;최병철;이기영
    • 한국자동차공학회논문집
    • /
    • 제11권2호
    • /
    • pp.56-62
    • /
    • 2003
  • Spray characteristics of conventional diesel fuel and bio-diesel fuel(methyl-ester of soybean oil) were compared, in terms of spray tip penetration and spray angle, by using a commercial high pressure common rail injection system for light-duty DI Diesel engines. The experiments were carried out under the non-evaporating condition at ambient density(8.8, $15.6 kg/\textrm{m}^3$) and injection pressure(75, 135 MPa). The experimental method was based on a laser sheet scattering technique. Spray tip penetrations of bio-diesel fuel were longer, on the whole, than those of conventional diesel fuel, except for lower injection pressure(75 MPa) under lower ambient density$(8.8 kg/\textrm{m}^3)$. But spray near angle and spray far angle of bio-diesel fuel were smaller than those of conventional diesel fuel, implying spray angle is related to the growth rate of spray tip penetration. The experimental results of spray tip penetration agreed well with the calculated values by the Wakuri et al.'s correlation based on the momentum theory.

노즐 형상비가 바이오디젤 연료의 노즐 내부 및 외부 유동 특성에 미치는 영향 (Effects of Nozzle Length-diameter Ratio on Internal and External Flow Characteristics of Biodiesel Fuel)

  • 박수한;서현규;이창식
    • 한국자동차공학회논문집
    • /
    • 제15권4호
    • /
    • pp.94-100
    • /
    • 2007
  • The purpose of this work is to investigate the effect of properties of diesel and biodiesel fuels on the nozzle cavitation and the effect of the length/diameter(L/D) ratio on internal and external flow pattern of nozzle at the various injection conditions. In order to study the effect of the L/D ratio on the nozzle cavitation characteristics of diesel and biodiesel, the characteristics of cavitation flow in the nozzle are visualized and analyzed at the injection pressure of 0.1 MPa to 0.7 MPa by using the visualized images. It was founded that the cavitation was formed in the nozzle orifice at the low injection pressure and the breakup of the issuing liquid jet was promoted at the low L/D ratio. When the L/D ratio decrease, cavitation beginning and growth were affect by cavitation number and Reynolds number.

고온 고압 분위기 조건에서 바이오 디젤과 DME의 혼합비에 따른 분무특성에 관한 연구 (An Experimental Investigation on Spray Behavior of Biodiesel and DME on Blended Ratio in High Temperature and Pressure Ambient Conditions)

  • 방승환;전문수;이창식
    • 한국분무공학회지
    • /
    • 제15권1호
    • /
    • pp.17-24
    • /
    • 2010
  • The objective of this work is to analyze the macroscopic behavior of spray and injection characteristics on the DME blended biodiesel at different mixing ratios by using spray visualization and injection rate measurement system. The spray images were analyzed to a spray tip penetration, a spray cone angle and a spray area distribution at various mixing ratio of DME by weight. The influence of different injection pressure and ambient pressure on the fuel spray characteristics are investigated for the various injection parameters. In order to analyze the injection characteristics of test fuels, the fuel injection rate is measured at various blending ratio. The variation of viscosity of the blended fuel by the mixing of DME fuel shows the improved effect of spray developments. Also, it was found that the injection quantities of high blended ratio were larger than that of lower blended fuel. Also, higher blending fuel showed a faster evaporation than that of mixing ratio of test fuel because kinetic viscosity was changed by blending ratio.

PPS시스템 이용 바이오디젤 혼합율에 따른 극미세입자 배출특성 비교 (Comparison of Nano-particle Emission Characteristics in CI Engine with Various Biodiesel Blending Rates by using PPS System)

  • 권지원;김민식;정명철;이진욱
    • 한국분무공학회지
    • /
    • 제17권3호
    • /
    • pp.134-139
    • /
    • 2012
  • The main purpose of this study is to analyze and compare the nano-particle emission characteristics by 3-different biodiesel blending rates in a CI engine. Nano-particle number density emitted from various operating conditions of compression ignition engine can be investigated by using the PPS (Pegasor Particle Sensor) system. Namely, some particle charged through the corona discharge in real-time can be measured by PPS system. Under the steady state operation of the 2.0L CRDi diesel engine with different operating condition and biodiesel blending rates, the nano-particle number density was analyzed at the downstream position of DOC system. As this research result, more engine load speed and higher the concentration of biodiesel blending rate showed that the nano-particle number density decreases. Also we found that DOC system for clean diesel engine is effectively useful instrument to reduce diesel particulate matter as resource of nano-particle generation.

오리기름으로부터 합성된 바이오젤의 연료특성 연구 (The Study of Fuel Properties for Biodiesel Derived from Duck's Oil)

  • 임영관;이천호;정충섭;임의순
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2010년도 추계학술대회 초록집
    • /
    • pp.103.2-103.2
    • /
    • 2010
  • Biodiesel was well known for eco-friendly alternative fuel for petrodiesel. But biodiesel have disadvantage such like it was derived from food resource which was high price. In this study, We synthesized the biodiesel from duck's oil which was food trash via transesterification under base catalyst. After analytic result of density, kinematic viscosity, cold temperature characteristics, lubricity and cetane number which were main fuel characteristics, this duck's biodiesel have enough to fuel specification for except of domestic winter season.

  • PDF

연료물성에 따른 경유 차량의 저온성능 영향 연구 (A Study on the cold weather performance for diesel vehicle as fuel properties)

  • 장은정;김성우;민경일;박천규;하종한;이봉희
    • 에너지공학
    • /
    • 제24권2호
    • /
    • pp.144-153
    • /
    • 2015
  • 저온에서 경유의 파라핀 왁스 생성 및 침전현상은 차량의 저온성능에 악영향을 준다. 본 연구에서는 경유에 바이오디젤, 등유, 저온특성첨가제를 혼합한 연료에 대해 연료조성에 따른 담점, 필터막힘점, 유동점 변화를 분석하였고, 경유의 저온특성에 따른 차량의 저온성능에 대해 평가하였다. 경유는 유동성향상 첨가제(WAFI)와 등유유분의 혼합량이 증가할수록 저온특성이 개선되었으며, 바이오디젤 혼합량이 증가할수록 저온특성이 악화되었다. WAFI는 필터막힘점 개선에, 등유유분은 담점 개선에 효과적이었다. 차량의 저온성능에 대하여 필터막힘점과 유동점의 영향성은 확인하였으나, 담점은 큰 영향이 없었다. 필터막힘점은 차량에 대해 저온에서의 운행가능 한계를 반영하였다.

한국산 고지질 미세조류 Botryococcus의 분포 및 생장 특성 (Physiological and Ecological Characteristics of Lipid-Producing Botryococcus Isolated from the Korean Freshwaters)

  • 신상윤;조범호;이형관;오희목
    • 환경생물
    • /
    • 제31권4호
    • /
    • pp.288-294
    • /
    • 2013
  • 한국산 고지질 Botryococcus를 확보하기 위해 시료채취를 하였고, 실험실에서 Botryococcus sp.를 분리하였다. 분리된 Botryococcus sp.는 현미경으로 그 크기와 형태를 관찰하였고, 분자적 동정을 위해 18S rRNA gene과 ITS region의 염기서열을 분석함으로써 Botryococcus sudeticus J2로 명명하였으며, 생태학적 특성 연구를 위해 문헌조사를 통해 국내의 Botryococcus 속의 분포를 조사를 실시하였다. 동정된 B. sudeticus J2의 생리적 특성 분석을 위해 배양실험을 수행하였고, 생장률과 바이오매스 생산성 그리고 광합성효율을 측정하였다. 또한 바이오디젤 생산을 위한 조류주로서의 가치를 판단하기 위해 총 지질함유량과 지방산 조성을 분석하였다. B. sudeticus J2의 생태적, 생리적 연구 후 2배의 광량과 2% $CO_2$ 조건에서 배양을 수행함으로써 최적 배양조건을 탐색하고자 하였다. 분리된 B. sudeticus J2는 비교를 위한 B. braunii UTEX 572보다 높은 바이오매스 생산성과 지질생산성을 보였으나 바이오매스 생산을 위한 다른 후보 미세조류에 비해서는 낮은 생장률을 보였다. 따라서 바이오디젤 생산을 위한 조류로 B. sudeticus J2를 활용하기 위해서는 본 연구에서 밝혀진 광저해에 대한 내성에 초점을 맞추어 최적 배양을 위한 광조건을 탐색하는 연구가 필요하다.