• 제목/요약/키워드: 바이어스 자속

검색결과 6건 처리시간 0.021초

Digital Sample and Hold 증폭기를 사용한 드리프트 자체 보상형 자속계의 제작 (Drift Self-compensating type Flux-meter Using Digital Sample and Hold Amplifier)

  • 가은미;손대락
    • 한국자기학회지
    • /
    • 제15권6호
    • /
    • pp.332-335
    • /
    • 2005
  • 자속계의 경우 입력전압을 적분하여야 되기 때문에 연산증폭기의 입력 바이어스 전류가 있으면 적분기의 출력이 드리프트하게 된다. 본 연구에서는 이 드리프트를 자동으로 측정하고 보상하기 위하여 전압변동이 없는 디지털 sample and hold증폭기를 자속계에 도입하여 제작하였다. 개발한 자속계의 경우 적분기의 시간상수 $RC=10^{-3}$ s에서 드리프트가 $5{\times}10^{-8}\;Wb/s$ 이하였다.

반경방향-축방향 일체형 4극 전자기 베어링의 설계 (II) - 바이어스 자속 공유형 - (Design of Combined Radial and Axial 4-pole Electromagnetic Bearing (II) - with Coupled Bias Flux -)

  • 김하용;김승종
    • 대한기계학회논문집A
    • /
    • 제29권12권
    • /
    • pp.1567-1573
    • /
    • 2005
  • This paper introduces a new active magnetic bearing(AMB) that can provide both radial and axial control functions in one bearing unit without axial disk. It has a structure of double four-pole AMB or a four-pole AMB where each core is split into two axially. The cores have two kinds of coil winding; they independently generate fluxes on the planes perpendicular or parallel to the shaft. For the radial control action, it works just like a conventional four-pole AMB. Meanwhile, for the axial control, it uses the Lorentz force generated by the interaction of the bias flux for radial control and the axial control flux. In this paper, the proposed structure, principle, and design process based on magnetic flux analysis are introduced, and its feasibility is experimentally verified by using a simple PD control algorithm with a feedforward loop to compensate the coupled flux effect.

반경방향-축방향 일체형 4극 전자기 베어링의 설계 (I) - 바이어스 자속 독립형 - (Design of Combined Radial and Axial 4-pole Electromagnetic Bearing (I) - with Uncoupled Bias Flux -)

  • 김하용;김승종
    • 대한기계학회논문집A
    • /
    • 제29권12권
    • /
    • pp.1561-1566
    • /
    • 2005
  • In this paper, a new compact active magnetic bearing(AMB) is proposed in which radial and axial bearings are integrated in one bearing unit. It consists of four U-shaped cores circumferentially connected by yokes and two-layer coils for radial and axial controls. For the radial control action, it has the same principle as conventional homopolar AMBs, while for the axial control, it uses the Lorentz force generated by the interaction of the bias flux for radial control and the axial control flux. The proposed structure makes it easy to design a compact AMB because it has no disk for axial control. This paper introduces the proposed structure, principle, and design process based on the magnetic flux analysis. By using a control algorithm with feedforward action to compensate the coupled flux effect, the feasibility of the proposed AMB is experimentally verified.

단순 원판형 평면 3자유도 액추에이터 설계 (Design of A Simple Disk-type 3-DOF Actuator)

  • 백두진;김하용;김승종
    • 한국소음진동공학회논문집
    • /
    • 제15권3호
    • /
    • pp.334-340
    • /
    • 2005
  • A disk-type 3-DOF actuator which has new principle and very simple structure is proposed. Also it utilizes the relation of bias and control fluxes produced by permanent magnets and coils, respectively, like other conventional electromagnetic actuators, but its main feature is that both the coils and permanent magnets are fixed in the stator, which makes it easy to design the shape of moving part. Operating principle is that a moving disk is driven by reaction force of Lorentz force acting on the fixed equivalent coil. Simple analytic approach and FEM analysis are performed to determine the design parameters so as to increase the driving force and distance. And some experimental results show the feasibility of the proposed actuator.

평면 다자유도 액추에이터 설계 (Design of A Plane Multi-DOF Actuator)

  • 백두진;김하용;김승종
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2004년도 추계학술대회논문집
    • /
    • pp.490-493
    • /
    • 2004
  • A 3-DOF actuator which has new principle and very simple structure is proposed. Its principle seems to be similar to conventional electromagnetic actuators, that is, to utilize the relation of control and bias fluxes produced by coils and permanent magnets, respectively, but the coils and permanent magnets of the proposed actuator are fixed in the stator. Such a structure helps to optimally design the actuator for its use. Some experimental and FEM analysis results show the feasibility of the proposed actuator and some characteristics of system that are useful lot structure design and control.

  • PDF