• Title/Summary/Keyword: 바닥 충격음

Search Result 288, Processing Time 0.027 seconds

Heavy-weight Impact Sound Characteristics of Floor Structure of a Small-Sized Wall-Slab Apartment Building having Joist Slab (장선슬래브를 갖는 소형평형 벽식구조 아파트 바닥구조의 중량충격음 특성)

  • Chun, Young-Soo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.1
    • /
    • pp.8-15
    • /
    • 2020
  • In the present paper, as a way of reducing heavyweight impact sounds, in particular, among floor impact sounds which have come to the forefront as a social issue recently, a floor joist slab is proposed that is expected to bring an effect of reducing heavyweight impact sounds through a shift in the natural frequency by installing a floor joist on a flat-type slab to increase the rigidity of the floor slab, differently from the existing method that increases the thickness of floor slab, and the heavyweight impact sound characteristics depending on the floor joist height and interval are interpretively analyzed. As a result of the analysis, though a trend is shown where the sound pressure level decreases as the slab thickness of floor joist increases, and as no difference is shown when thickness is above a certain value, it is thought that there is a threshold for the effect of an increase in floor thickness on blockage of heavyweight impact sounds. Also, as an increase in floor rigidity resulting from an increase in the floor joist height and a decrease in the interval does not lead to a consistent increase in the performance of blocking heavyweight impact sounds, it is thought that a different floor joist height and interval should be applied to each type of house to expect optimum performance of blocking heavyweight impact sounds, and an increase of 100mm in the floor joist height or a decrease of about 100mm in the interval is expected to bring an effect of reducing heavyweight impact sounds by about 1dB to 2dB.

Standardization for the laboratory measurements of the reduction of transmitted impact noise by floor coverings (바닥충격음 저감량 실험실 측정방법의 KS규격화 방안)

  • 장길수;정갑철;김재수;김선우
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11a
    • /
    • pp.376-382
    • /
    • 2001
  • 최근 국내에서는 국제규격과의 부합화에 부응하여 바닥충격음에 대한 측정방법이 개정(2001년 6월 19일자 기술표준원 고시 제2001-334호)되어, KS F 2810-1(바닥충격음 차단성능 현장 측정방법 제1부- 표준 중량충격원에 의한 방법)과 KS F 2810-2(바닥충격음 차단성능 현장 측정방법 제2부 - 표준 중량충격원에 의한 방법)으로 규격화되었다. 이는 현장 측정방법으로서 완성된 건축물에 대한 차음성능을 공간성능으로 측정하고자 한 것이다. (중략)

  • PDF

The Research of the Heavy-Weight Impact Sound Characteristic by Live load Installation on the Source Room (공동주택 음원실 바닥의 하중 설치에 따른 중량충격음 특성에 관한 연구)

  • Kim, Kyoung-Woo;Yang, Kwan-Seop;Sohn, Jang-Yeul
    • The Journal of the Acoustical Society of Korea
    • /
    • v.26 no.6
    • /
    • pp.235-242
    • /
    • 2007
  • The test and evaluation of floor impact sound is mainly conducted before move in the residence. Floor impact sound generating is actually the conditions in which a heavy load like a curtain and furniture is installed, the situation before and after move in the residence is different. In this study, we investigate the floor impact sound variations according to the live load installation like furniture in the source room. The vibration acceleration level and floor impact sound level variation were measured before and after live load ($200kg/m^2$) installation in the floor impact sound test building and the field. The difference was not large although the vibration acceleration level and the floor impact sound level were reduced through measurement result of load installation. Resonance frequency was not changed by load installation.

Evaluation of floor impact sound and airborne sound insulation performance of cross laminated timber slabs and their toppings (구조용 직교 집성판 슬래브와 상부 토핑 조건에 따른 바닥충격음 및 공기전달음 평가)

  • Hyo-Jin Lee;Yeon-Su Ha;Sang-Joon Lee
    • The Journal of the Acoustical Society of Korea
    • /
    • v.42 no.6
    • /
    • pp.572-583
    • /
    • 2023
  • Demand for wood in construction is increasing worldwide. In Korea, technical reviews of high-rise Cross Laminated Timber (CLT) buildings are under way. In this paper, Floor Impact Sound Insulation Performance (FISIP) and Transmission Loss (TL) of 150 mm thick CLT floor panels made of two domestic species, Larix kaempferi and Pinus densiflora, are investigated. The CLT slabs were tested in reverberation chambers connected vertically. When comparing Single Number Quantity (SNQ) of FISIP of the bare panels, the Larix CLT is 3 dB lower in heavy-weight and 1 dB in light-weight than the Pinus CLT. However, there was no difference when concrete toppings were added to improve the performance. As the concrete toppings became thicker, the heavy-weight was reduced by 9 dB ~ 20 dB, and the light-weight by 20 dB ~ 30 dB. And the analysis of these results with area density has confirmed that the area densities are highly correlated (R2 = 0.94 ~ 0.99) to the FISIP of the CLT. The types of CLT didn't affect the TL. Comparison of theoretical TL values with measured TL values has shown that the frequency characteristics are similar but 8 dB ~ 12 dB lower in measured values. The relationship between the TL and frequency characteristics of the tested CLT slabs was derived by using the correction value.

Reduction of Floor Impact Noise and Impact Force for PVC Floor Covering and Floor Mat (PVC 바닥 마감재와 바닥 매트의 바닥충격음 및 충격력 저감)

  • Mun, Dae-Ho;Song, Guk-Gon;Lee, Cheol-Seung;Park, Hong-Gun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.24 no.7
    • /
    • pp.501-508
    • /
    • 2014
  • Floor finishing materials such as floor coverings and floor mats can reduce floor impact noise easily. When an impact was applied to the floor, its finishing material is deformed and the impact force that was applied to the concrete slab is changed. The softer finishing materials were, the more impact force decreased. An experimental study was performed using 14 PVC floor coverings and 16 floor mats to capture the characteristics of impact force and impact noise in the residential buildings. The test results show that the impact force spectrum and the floor impact noise spectrum have a linear relationship in the case of a bare concrete slab, and the characteristics of impact force reduction are the same as those of floor impact noise reduction.

Characteristics of the floor impact sound by water to binder ratio of mortar (마감모르타르 물결합재비에 따른 바닥충격음 특성 변화)

  • Lee, Won-Hak;Haan, Chan-Hoon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.40 no.6
    • /
    • pp.671-677
    • /
    • 2021
  • The present study aims to investigate the influence of the water to binder ratio of finishing mortar on the floor impact sound of apartments. For this, same resilient materials Expanded Polystyrene (EPS) with constant dynamic stiffness and different mortar layers with 52 %, 66 % and 72 % water to binder ratio respectively were used to build floating floor structures on which floor impact sounds were measured in standard testing facilities. As a result, it was found that light-weight floor impact sound was transmitted well when the water to binder ratio was 52% due to the high density. In case of heavy-weight floor impact sounds, since water to binder ratio of finishing mortar becomes higher as the weight of upper layer of resilient material lighter, it was shown that the natural frequency of floating floor structure moves to 63 Hz bandwidth which eventually cause a higher sound pressure level of floor impact sound. Thus, effect of water to binder ratio of mortar on the heavy-weight floor impact sounds was investigated.

Determination of dynamic stiffness (동탄성계수 결정의 KS 규격화에 관한 연구)

  • 정갑철;오양기;김선우
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.1116-1119
    • /
    • 2002
  • 최근의 국제화 추세에 따라 국내의 산업규격을 국제규격인 ISO와 부합시키는 방향으로 나아가고 있다. 공동주택의 바닥충격음 문제가 사회적인 관심이 되면서 탄성재료(완충재)를 이용한 뜬 바닥 구조가 많이 사용되고 있다. 탄성재료의 동탄성계수와 바닥충격음의 경량충격음과는 밀접한 관계가 있다.(중략)

  • PDF

Analysis of the Deviation Factor in a Reverberation Time to Measuring the Normalized Impact Sound Pressure Level (규준화 바닥충격음레벨 측정시 잔향시간의 편차요인 분석)

  • 이주원;홍병국;이동훈;권영필
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.509-512
    • /
    • 2004
  • 규준화 바닥충격음레벨 평가시 잔향시간은 흡음력 보정을 위해서 필수적으로 고려해야 할 사항이다. 그러나, 잔향시간의 측정 편차가 심하기 때문에 이로 인해 규준화 바닥충격음레벨이 5dB 이상씩 변동하는 경우가 생긴다. 잔향시간 측정 편차의 원인은 실의 형상에 따른 고유모드 분포로 설명할 수 있으며, 측정시 계측기에서의 원인, 특히 동특성에 따라 측정 편차가 심하다는 것을 실험을 통해 알 수 있었다. 또한, 잔향곡선은 직선적인 형태일 경우에 정확한 측정이 가능하나, 저주파수 대역에서는 잔향곡선에 요철이 많이 생기므로 측정 데이터들을 이용하여 잔향시간을 산출할 때 세심한 주의가 요구된다.

  • PDF

Evaluation of Floor Impact Sound Performance according to the Reduction Methods (바닥충격음 저감방안에 따른 성능평가)

  • 김경우;최경석;최현중;양관섭
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.131-136
    • /
    • 2004
  • Impact sounds, such as those created by footsteps, the dropping of an object or the moving of furniture, can be a source of great annoyance in residential buildings. The character and level of impact noise generated depends on the object striking the floor, on the basic structure of the floor, and on the floor covering. This study base on the evaluate of isolation performance of impact sound according to the impact noise reduction methods. Reduction methods consist of four ways. First way is increase thickness of bare floor and other ways are using the soft coverings on the floor and ceiling assembles. Last way is make floating floor with shock absorbing materials.

  • PDF

Evaluation of Floor Impact Sound Performance according to the Reduction Methods (바닥충격음 저감방안에 따른 성능평가)

  • Choi Gyoung-Seok;Choi Hyun-jung;Yang Kwan-Seop;Kim Kyoung-Woo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.9 s.90
    • /
    • pp.811-818
    • /
    • 2004
  • Impact sounds, such as those created by footsteps, the dropping of an object or the moving of furniture, can be a source of great annoyance in residential buildings. The character and level of impact noise generated depends on the object striking the floor, on the basic structure of the floor, and on the floor covering. This study base on the evaluate of isolation performance of impact sound according to the impact noise reduction methods. Reduction methods consist of four ways. First way is increase thickness of bare floor and other ways are using the soft coverings on the floor and ceiling assembles. Last way is make floating floor with shock absorbing materials.