• Title/Summary/Keyword: 바나듐 회수율

Search Result 23, Processing Time 0.022 seconds

A Study on Leaching of Vanadium and Nickel from Incineration Ash of Heavy Oil Fly Ash (중유회 소각재로부터 바나듐, 니켈 침출에 관한 기초적 연구)

  • 유연태;김병규;박경호;홍성웅
    • Resources Recycling
    • /
    • v.4 no.3
    • /
    • pp.32-39
    • /
    • 1995
  • Thc purpose of this study is to develop the efficient process for recovering vanadium and nickel from the incineralionash of the oil fly ash. In this paper, the physical and chemical properties of the incineration ash was examined, and theleaching characteristics of the incineration ash were investigated by water leaching and sulEuric acid leaching tcsls. The incinerationash of oil fly ash was mainly consisted of oxldes such as V,09, V,O,, NaVO,, Ni,(VO,)Z, Fe,O,, CaSO,, SiO,.Thc waler leaching showed low extraction of metallic components, while the sulfunc acid lcaching with high temperahlreand pressure increased the extraction of vanadium and nickcl considerably. For instance, the exlraction rates of the metalllccomponents on the sulfuric acid leaching were 99% for V and 45% for Ni at 90$^{\circ}$C with pH 0.5 H,SO,, and were86% for V and 75% far Ni at ZOO"C(64 psi) with pH 1.0 H-SO,. with pH 1.0 H-SO,.

  • PDF

Concentration of Functional Mineral by NF/RO Processes (나노여과/역삼투 공정을 이용한 기능성 미네랄의 농축)

  • Lee, Ho-Won;Moon, Soo-Hyoung;Ko, Kyoung-Soo
    • Membrane Journal
    • /
    • v.19 no.4
    • /
    • pp.277-284
    • /
    • 2009
  • In order to select the most suitable membrane to the concentration of vanadium and silica in groundwater, two different commercial NF membrane modules (NE2540-90 and NF90-2540) and three different commercial RO membrane modules (BW30-2540, RE2540-TE, and XLE-2540) were tested. The membrane characteristics test results showed that NE2540-90 module was the most efficient because of higher permeate flux and similar rejection coefficient. Using NE2540-90 module at the transmembrane pressure of $8\;kgf/cm^2$, it was found that the rejection coefficients of vanadium, silica, aluminium, chromium, iron, boron, strontium, and barium were 98.2%, 99.0%, 92.0%, 83.6%, 96.0%, 45.1%, 98.6%, and 69.5%, respectively. It was possible that vanadium and silica contents of groundwater were concentrated into $148.9\;{\mu}g/L$ and 85.8 mg/L respectively by six-stages NF process at the recovery ratio of 15%. The waters produced by NF, which are enriched in vanadium and silica content, are expected to be commercialized the various functional mineral waters.

Spectrophotometric Determination of Vanadium(IV) with 2-Hydroxybenzaldehyde-5-Nitro-pyridylhydrazone in the Presence of Sodium Dodecyl Sulfate (Sodium dodecyl sulfate에서 2-Hydroxybenzaldehyde-5-Nitro-pyridylhydrazone을 이용한 바나듐(IV)의 분광광도법 정량)

  • Park, Chan-Il;Jung, Young-Chul;Cha, Ki-Won
    • Analytical Science and Technology
    • /
    • v.13 no.1
    • /
    • pp.22-26
    • /
    • 2000
  • 2-Hydroxybenzaldehyde-5-Nitro-pyridylhydrazone (2HB-5NPH) was synthesized and its application in the spectrophotometric determination of vanadium ion(IV) was studied in the presence of surfactant. The optimum conditions of pH, solvent effect, concentration of ligand and surfactant were evaluated. The procedure was applied to determination of vanadium (IV) in mixture sample and real sample with satisfactory results (recovery ${\geq}$ 97% ; relative standard deviation ${\leq}$ 3.0% in the concentration range of $0{\sim}1.5{\mu}g/mL$ ; detection limit, $0.02{\mu}g/mL$ in solution).

  • PDF

Water Leaching of Tungsten and Vanadium through Mechanochemical Reaction of Their Oxides and Alkali-Compounds (알칼리화합물과 텅스텐/바나듐산화물의 기계화학반응을 이용한 수 침출 연구)

  • Kim, Byoungjin;Kim, Suyun;Lee, Jaeryeong
    • Resources Recycling
    • /
    • v.27 no.4
    • /
    • pp.57-64
    • /
    • 2018
  • Water leaching of tungsten(W) and vanadium(V) was researched from their oxides through mechanochemical (MC) reaction with alkali compounds. Intensive grinding for the mixture of tungsten/vanadium oxide and alkali compounds (NaOH, $Na2CO_3$) was carried out with change of their mixing ratios and grinding duration. Water soluble compounds, $Na_2WO_4$ and $NaVO_3$, were synthesized through MC reaction and their solubilities increased in proportion to the mixing ratio of sodium compound and grinding times. Whereas vanadium leachability was less affected by the mixting ratio and grinding times. The leachabilities of 99.0% were accomplished by a short period of MC treatment, W (30 min.) and V (5 min.). This process enable us to extract W and V from their oxides via a water leaching, and can be applied to the selective recovery of W and V from $DeNO_x$ spent catalysts.

Leaching Behavior of Vanadium and Possibility of Recovery of Valuable Metals from VTM Concentrate by Sulfuric Acid Leaching (바나듐함유 티탄철석 정광으로부터 황산 침출법에 의한 바나듐의 침출거동 및 유가금속의 회수가능성)

  • Joo, Sung-Ho;Shin, Dong Ju;Lee, Dongseok;Park, Jin-Tae;Jeon, Hoseok;Shin, Shun Myung
    • Resources Recycling
    • /
    • v.31 no.1
    • /
    • pp.65-77
    • /
    • 2022
  • A study was conducted in Korea on the leaching behavior and possibility of recovery of vanadium and other valuable metals from domestic vanadium titanomagnetite (VTM) by direct acid leaching. In this study, a VTM concentrate containing 0.8% V2O5 was used, and the ratio of magnetite to ilmenite was calculated as 1.9:1 by using the HSC program. The leaching behavior of vanadium from the VTM was similar to that of iron, and it was affected by the concentration of sulfuric acid and temperature. Further, titanium could be leached in the form of TiOSO4 at a temperature higher than 75℃. To improve the leaching efficiency of V, Fe, and Ti in VTM, reductive sulfuric acid and oxidative sulfuric acid leaching were performed. When Na2SO3 was used as a reducing agent, the leaching rate of vanadium was 80% of that in that case of leaching by sulfuric acid. Similarly, the leaching rate of titanium increased from 20% to 50%. When Na2S2O8 was used as an oxidation agent, most of the vanadium was leached, and the main residue found by XRD analysis was ilmenite. In studies on the possibility of recovering valuable metals, the selective extraction of metals is hardly achieved by solvent extraction from oxidation leaching solutions; however, in this study, Cyanex 923, a solvation extractant from reductive leaching solutions, could selectively extract Ti.

Adsorption/Desorption Characteristics of Vanadium from Ammonium Metavanadate using Anion Exchange Resin (음(陰)이온교환수지(交換樹脂)를 이용한 Ammonium Metavanadate로부터 바나듐 흡탈착(吸脫着) 특성(特性))

  • Jeon, Jong Hyuk;Kim, Young Hun;Hwang, In Sung;Lee, Jin Young;Kim, Joon Soo;Han, Choon
    • Resources Recycling
    • /
    • v.22 no.1
    • /
    • pp.55-63
    • /
    • 2013
  • Considering considerable contents of vanadium and tungsten in spent SCR DeNOx catalysts, separation and recovery of those metals are required. In this respect, commercial anion exchange resin (MP600) was employed to recover vanadium from the synthetic solution of ammonium metavanadate. Experimental results indicated that vanadium exist as anion under the acidic condition (pH 2 ~ 6) and adsorbed on the resin. Although the adsorption rate was increased with temperature, the maximum amount of adsorption was not affected by temperature. Desorption took place under either strong acidic (less than pH 1) or strong caustic (higher than pH 13) condition. However, desorption seldom took place under moderate conditions (pH 3~11). Furthermore, adsorption equilibrium results agreed well with Freundlich isotherm and pseudo-second-order reactions. And, adsorption energy was evaluated using Dubinin-Radushkevich and Temkin isotherm.

Effect of Precipitation Temperature and Solution pH on the Precipitation of Ammonium Metavanadate (침전온도 및 수용액 pH가 암모늄메타바나데이트 침전반응에 미치는 영향)

  • Heo, Seo-Jin;Kim, Rina;Chung, Kyeong Woo;Jeon, Ho-Seok;Kim, Chul-Joo;Yoon, Ho-Sung
    • Resources Recycling
    • /
    • v.30 no.6
    • /
    • pp.3-11
    • /
    • 2021
  • In this study, the effect of the solubility of ammonium metavanadate and the decomposition ratio of ammonium ions on a precipitation reaction-the precipitation of ammonium metavanadate by adding ammonium chloride to a sodium vanadate solution-was investigated. As the precipitation temperature and pH increased, the decomposition ratio of ammonium ions increased, and the decomposition ratio was greater than 81% at 45 ℃ and pH 9.3. This was approximately four times higher than that at pH 8. The result of the precipitation reaction, in view of these two factors that significantly influence the precipitation reaction, was that the precipitation yield increased as the temperature increased. However, the effect of temperature was not significant above 35 ℃. A kinetic study of the precipitation reaction revealed that the activation energy of the reaction was 42.3 kJ/mol. Therefore, considering the solubility of ammonium metavanadate, the lower the temperature, the better the vanadium recovery yield. Additionally, considering the decomposition of ammonium ions, the lower the pH of the aqueous solution, the more advantageous. However, at pH 8 or less, sodium polyvanadate is precipitated and the purity of vanadium oxide may reduce.

Recovery of Molybdenum from the Desulfurizing Spent Catalyst (석유 탈황 폐촉매로부터 몰리브덴의 회수에 관한 연구)

  • 김종화;서명교;양종규;김준수
    • Resources Recycling
    • /
    • v.7 no.2
    • /
    • pp.9-15
    • /
    • 1998
  • Recovery af molybdenum in spent desulfuriring catalyst of petrochemical industries was studied from MfGnatc solulion which is a resultant of firstly remvercd vanadium by wet processes. In order to separate and recover molybdenum from upper mentioned rafinatz solution containing several mctal ions, such as molybdenum (1,100 ppm), vanadium (150 ppm), aluminium (19 ppm), and nickel (33 ppm), either adsorption technique by chelate resin or solvent extr~ction by tertiary amine as extractant was applied. In case of adsorption method, palyamine type chelate resin showed the highest selectivily far molybdenum ion up lo 60 ddm' of ancentration aftcr eluting with 3.0 rnolld~n' of NH,OH. On the othcr hand. molybdenum ion wa cffectlvely cxtractcd in Ule whole ranges of equilibrilrm pR by solvent extraction method with 10 ~01%-alamine 336 which was pretreated with 2N-HCI

  • PDF

Leaching of Vanadium and Tungsten from Spent SCR Catalysts for De-NOx by Soda Roasting and Water Leaching Method (소다배소(焙燒) 및 수침출법(水浸出法)에 의한 탈질용(脫窒用) 폐(廢) SCR 촉매(觸媒)로부터 바나듐과 텅스텐 침출(浸出))

  • Kim, Hye-Rim;Lee, Jin-Young;Kim, Joon-Soo
    • Resources Recycling
    • /
    • v.21 no.6
    • /
    • pp.65-73
    • /
    • 2012
  • Selective catalytic reduction(SCR) catalysts are obtained from de-NOx system of thermoelectric power plant. A process was developed for valuable metals such as vanadium and tungsten recovery from spent SCR catalyst by using soda roasting followed by water leaching. Spent SCR catalyst having $V_2O_5$(1.23 mass %) and $WO_3$(7.73 mass %). For getting soluble metal forms of the targeted metals like vanadium and tungsten soda roasting process was implemented. In soda roasting process, sodium carbonate added 5 equivalent ratio at roasted temperature $850^{\circ}C$ with 120 min roasted time for $544{\mu}m$ particle size of spent SCR catalyst. After soda roasting process moved to water leaching for roasted spent catalyst. Before leaching process the roasted spent catalyst was grinded up to $-45{\mu}m$ size. The leaching time is 30 min at $40^{\circ}C$ temperature, 10 % pulp density. The final leaching efficiency obtained 46 % of vanadium and 92 % of tungsten from present process.

Recovery of Valuable Metals from the Desulfurizing Spent Catalyst Used in Domestic Petrochemical Industry (국내 석유공장의 탈황 폐촉매로부터 유가금속의 회수에 관한 연구)

  • 김종화;양종규
    • Resources Recycling
    • /
    • v.4 no.3
    • /
    • pp.2-9
    • /
    • 1995
  • The rccoverg and separation pracess of nikcl, vanadium and molybdenum from spent dcsulfilrizing catalyst ofpetrochemical rndustries was studied. Tnis process was canied out wet process which is consist of roasting, ammonialeaching and solve111 exDaction techniqcs. The metal ions of NI, V and Mo as vduable compollents were treated byroasting them a1 low lernperatuc, 400$^{\circ}$C in first dep, and then dlssah'ed nu1 at 80$^{\circ}$C wlth ammonium cabonate mlulion.Aftcr cooling them a1 room tempertaure, vanadium wa rccavered from mathcr iiquur in thc f n m of precipitate, sodiumvanadales The Secand slep, roasting the catalyst which is added sodium carbonate ul IOOO"C, was employed. Leachingwith distilled ~ a l e rga ve a iwo phase resultant, solutio~c~a ntaning Ni, V and Mo and solid residue containing sibca,alurmniu~n and iron. A solvcnt exlclction technique uslng vvriuus extractanls, MSP-8, TOIUC, LIX64Pi was eflecnve farthc extraclion and scparation ol thrcc mcfals from thc ammonical 11qou1 thc ammonical 11qou1.

  • PDF