• Title/Summary/Keyword: 바꿔쓰기표현

Search Result 3, Processing Time 0.019 seconds

Automatic Extraction of Paraphrases from a Parallel Bible Corpus (정렬된 성경 코퍼스로부터 바꿔쓰기표현(paraphrase)의 자동 추출)

  • Lee, Kong-Joo;Yun, Bo-Hyun
    • Korean Journal of Cognitive Science
    • /
    • v.17 no.4
    • /
    • pp.323-336
    • /
    • 2006
  • In this paper, we present a pilot system that can extract paraphrases from a parallel corpus using to-training method. Paraphrases are useful for the applications that should rreate a varied ind fluent text, such as machine translation, question-answering system, and multidocument summarization system. One of the difficulties in extracting paraphrases is to find a rich source from which we can extract paraphrases. The bible is one of the good sources fur extracting paraphrases as it has several Korean versions in which every sentence can be easily aligned by the chapter and the verse. We ran extract not only the lexical-level paraphrases but also the phrasal-level paraphrases from the parallel corpus which consists of the bibles using co-training method.

  • PDF

Analysis of Sentential Paraphrase Patterns and Errors through Predicate-Argument Tuple-based Approximate Alignment (술어-논항 튜플 기반 근사 정렬을 이용한 문장 단위 바꿔쓰기표현 유형 및 오류 분석)

  • Choi, Sung-Pil;Song, Sa-Kwang;Myaeng, Sung-Hyon
    • The KIPS Transactions:PartB
    • /
    • v.19B no.2
    • /
    • pp.135-148
    • /
    • 2012
  • This paper proposes a model for recognizing sentential paraphrases through Predicate-Argument Tuple (PAT)-based approximate alignment between two texts. We cast the paraphrase recognition problem as a binary classification by defining and applying various alignment features which could effectively express the semantic relatedness between two sentences. Experiment confirmed the potential of our approach and error analysis revealed various paraphrase patterns not being solved by our system, which can help us devise methods for further performance improvement.

Detection of Similar Answers to Avoid Duplicate Question in Retrieval-based Automatic Question Generation (검색 기반의 질문생성에서 중복 방지를 위한 유사 응답 검출)

  • Choi, Yong-Seok;Lee, Kong Joo
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.8 no.1
    • /
    • pp.27-36
    • /
    • 2019
  • In this paper, we propose a method to find the most similar answer to the user's response from the question-answer database in order to avoid generating a redundant question in retrieval-based automatic question generation system. As a question of the most similar answer to user's response may already be known to the user, the question should be removed from a set of question candidates. A similarity detector calculates a similarity between two answers by utilizing the same words, paraphrases, and sentential meanings. Paraphrases can be acquired by building a phrase table used in a statistical machine translation. A sentential meaning's similarity of two answers is calculated by an attention-based convolutional neural network. We evaluate the accuracy of the similarity detector on an evaluation set with 100 answers, and can get the 71% Mean Reciprocal Rank (MRR) score.