• Title/Summary/Keyword: 밀폐공간

Search Result 350, Processing Time 0.025 seconds

Natural Convection in a Partially Opened Enclosure with a Horizontal Divider (수평격판을 갖는 상부가 부분 개방된 밀폐공간내의 자연대류)

  • Kim, J.S.;Chung, I.K.;Song, D.J.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.7 no.3
    • /
    • pp.528-537
    • /
    • 1995
  • Natural convective flow and heat transfer characteristics in a partially opened enclosure fitted with a horizontal divider are investigated numerically. The enclosure is composed of a lower hot and a upper cold horizontal walls and adiabatic vertical walls. A divider is attached perpendicularly to the vertical insulated wall. The governing equations are solved by using the finite element method with Galerkin method. The computations have been carried out by varying the length of divider, the opening size, and the Rayleigh number based on the temperature difference between two horizontal walls and the enclosure height for air(Pr=0.71). As result, when the opening size is fixed, the intensity of the secondary flow is weaken as the length of divider increases. The maximum heat transfer rate over the upper cold wall occurs at a position bounded on the opening. However, when the length of divider is increased considerably, its maximum occurs at the right wall. The stability and frequency of oscillation are affected by the Rayleigh number and length of divider. The Nusselt number is increased with the increase of the opening size and the increase of Rayleigh number.

  • PDF

Turbulent natural convective heat transfer charateristics in a square enclosure with control plates attached at the horifontal partition (제어판이 부착된 수평격판에 의해 분리되는 밀폐공간내의 난류 자연대류 열전달 특성)

  • 김점수
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.2
    • /
    • pp.150-160
    • /
    • 2000
  • Turbulent natural convective flow and heat transfer in a square enclosure with horizontal partition are investigated numerically. The enclosure is composed of a lower hot and a upper cold horizontal walls and adiabatic vertical walls. Partitions carried with the upward, downward, and both control plates are attached perpendicularly to the one of the vertical insulated walls, respectively. The low Reynolds number $k-\varepsilon$ model is adopted to calculate the turbulent thermal convection. The governing equations are solved by using the finite element method with Galerkin method. The computations have been carried out by varying the length of partition, the position of control plates, and the Rayleigh number based on the temperature difference between two horizontal walls and the enclosure height for water(Pr=4.95). When the control plates are attached at the edge of partition, the stability of oscillating flow grows wrose with the increase of Rayleigh number and the partition length. The heat transfer rate has been reducer than that of no control plate due to the restraint of control plates with the increase of Rayleigh number.

  • PDF

Natural Convection Heat Transfer and Flow Characteristics in a Square Enclosure with an Isolated Heat-Generating Innerboby (고립된 발열물체를 가지는 정사각형 밀폐공간 내에서의 자연대류 열전달 및 유동 특성에 관한 연구)

  • 이재헌
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.8 no.4
    • /
    • pp.360-367
    • /
    • 1984
  • 본 연구에서는 F=1/4때 및 F=4일때 각각 Fx 및 Fy가 변하는 율을 동일하게 선택하였다. 따라서 F=1/4때의 Fx값은 중력의 방향을 90˚회전 시킬때의 경우인 F=4 일 때의 Fy값과 동일하여진다.

Natural Convection from the Concave Wall in a Square Enclosure (오목벽면이 있는 밀폐공간에서 자연대류)

  • Park T. S.
    • Journal of computational fluids engineering
    • /
    • v.7 no.1
    • /
    • pp.28-35
    • /
    • 2002
  • The effect of concave curvature on the natural convection has been numerically studied using the higher-order finite difference method. The heating wall in a enclosure is approximated by a cosine function. The heat transfer coefficient is analyzed for three Rayleigh numbers and five amplitudes. For Ra = 10/sup 8/ the separation and reattachment are observed on the adiabatic walls. The wall heat transfer are slightly changed by the increasing curvatures.

Research of Solid Propellant Electrostatic Sensitivity in Confinement (밀폐공간에서의 추진제 정전기 민감도에 대한 연구)

  • Choi, Jiyong;Lee, Seonjae;Kim, Jihong;Kim, Jinyong;Park, Euiyong
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.24 no.4
    • /
    • pp.73-78
    • /
    • 2020
  • The main reasons that ignite the propellant in the process of producing solid rocket motor are worker mistakes, wrong working process, mechanical defects, impact, friction, electrostatic and short circuits. In the past decades, many accidents have occurred in the process of producing solid rocket motor, accidents investigation have confirmed that the sensitivity of electrostatic is very high under specific condition. In this paper, we analyzed overseas accident cases and measured the sensitivity of electrostatic in the situation of confinement and pressure load by considering the manufacturing process. As a result of the test, the sensitivity of propellant was increased in the situation of confinement and pressure load and the propellant reacted more sensitively to electrostatic in the situation of confinement than pressure load.

Heating Performance of Ground source Heat Pump using Extruding Ground Water (유출지하수 열원 지열히트펌프시스템의 난방성능)

  • Park, Geun-Woo;Lee, Eung-Youl
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.460-465
    • /
    • 2007
  • 유출지하수는 지하공간이 깊고 넓게 분포하는 건물에서 자연적으로 유출되어 배출되는 낮은 심도의 지하수이다. 본 연구에서는 신축된 교회건물에서 유출되는 지하수를 열원으로 밀폐형태와 개방형태의 열교환기를 활용하여 각각 5RT급 히트펌프시스템을 난방모드로 운전한 결과를 정리하였다. 실험은 난방순환수의 온도를 $43{\sim}49$ $^{\cdot}C$ 범위에서 제어하면서 진행하였으며, 시스템 COP에 있어서 밀폐형은 $4.12{\sim}4.75$, 개방형은 $3.42{\sim}3.98$의 범위에서 측정되었다. 이는 기존의 지열히트펌프시스템의 COP와 대동 소이한 우수한 성능이라고 판단된다. 또한 펌프동력을 제외한 히트펌프 자체 난방COP에 있어서 밀폐형은 $4.69{\sim}5.81$, 개방형은 $4.38{\sim}5.43$의 범위에서 나타났다. 유출지하수의 온도가 겨울철에도 약 $12{\sim}14^{\cdot}C$를 유지하므로 히트펌프와 시스템전체의 COP가 매우 우수한 값을 나타내고 있음이 확인되었다.

  • PDF

A Study on Sound Wave and Signal Processing in Enclosed Space (밀폐공간에서의 소리파동과 신호처리에 관한 연구)

  • Jeon, Yong-Woo;Soh, Dea-Wha
    • Journal of the Speleological Society of Korea
    • /
    • no.70
    • /
    • pp.63-74
    • /
    • 2006
  • 소리의 파동, 특히 밀폐된 동굴 속에서 일어나는 음향파동에 대한 과학적 접근과 함께 첨단과학을 통한 소리의 분석기법을 통하여 소리과학과 동굴 및 그 구조에 따른 음파의 공명(증폭)현상과 인류생활의 소리문화의 상관성을 재조명하였다. 따라서 동굴 속에서 음악을 연주하는 경우 작은 소리라도 매우 웅장한 소리효과를 낼 수 있으며, 고음보다는 저음에서의 울림효과를 크게 가져 올 수 있다. 특히 이러한 파동현상과 음향효과를 통하여 기 발굴된 동굴의 체계적 관리 방안과 미 발굴 지하 동굴의 발굴에도 적용할 수 있을 것으로 기대되며, 동굴의 음향파동현상을 응용한 기술로 지각운동과 변화 및 동굴의 상태 분석과 변화 요인을 관찰하는데 효과적인 역할과 방법을 제공할 수 있을 것으로 기대된다.

Study on Improvement of Air Quality through Analysis of Ventilation Efficiency in Complex Enclosures of a Ship (선박 복합 밀폐공간 내 환기효율 분석을 통한 공기환경 개선에 관한 연구)

  • Jeong, Jae-Hoon;Song, Doosam
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.27 no.8
    • /
    • pp.440-447
    • /
    • 2015
  • In the shipbuilding process, the confined work spaces of the ship are formed continuously; the ventilation method can therefore be limited to dilution ventilation due to the complex structure and limited opening of the confined space. Also, it is difficult to evaluate air-quality using measurement and an adequate ventilation method. CFD simulation methods are typically used in analyzing ventilation efficiency in these cases. In this study, a method is suggested to analyze the air quality of the complex enclosures in shipbuilding using CFD. Especially, among the conventional indices, the ventilation efficiency scales or indices, the supply air contribution (SVE4), and the age of the air (SVE3) (fit for the confined and complex enclosure) were applied.

A Study of Thermal and flow Characteristics Induced by Fire in a Partial Enclosure (부분밀폐공간내에서 화재로 야기되는 열 및 유동특성에 관한 연구)

  • 박희용;한철희;박경우
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.5
    • /
    • pp.1288-1300
    • /
    • 1994
  • Mathematical modeling and numerical calculation on the flow and thermal characteristics induced by fire in a partial enclosure are performed. The solution procedures include the Shvab-Zeldovich approximation for the physical transport equations, low Reynolds number k-.epsilon. model for the turbulent fluid flow and Discrete Ordinate method(DOM) to calculate the radiative heat transfer. PMMA(Polymethylmethacrylate) is adopted as a solid fuel. Two different cases are considered : combustions with and without gas radiation occuring in a open cavity for variable pyrolyzing location of PMMA. When the fire source is located at the left-wall, the flow region of flame gas is limited at the left-wall and ceiling and recirculation region of inlet gas is formulated at neat the floor. In case of neglecting the radiative heat transfer, more large flame size and higher temperature is predicted. It is essential to consider the radiative heat transfer for analysis of fire phenomenon.