• Title/Summary/Keyword: 미연배기가스 점화

Search Result 5, Processing Time 0.018 seconds

Emission Reduction using Unburned Exhaust Gas Ignition (미연배기가스 점화 기술을 이용한 배기저감)

  • 김득상;강봉균;양창석;조용석
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.3
    • /
    • pp.39-47
    • /
    • 2003
  • UEGI (Unburned Exhaust Gas Ignition) is an alternative method for fast light-off of a catalyst. It ignites the unburned exhaust mixture using two glow plugs installed in the upstream of the close-coupled catalysts. In addition, a hydrocarbon adsorber was applied to the UEGI, for more effective reduction of HC emission. Engine bench tests show that the CCC reaches the light-off temperature laster than the baseline exhaust system and HC and CO emissions are reduced significantly during the cold start. From the vehicle test, it was observed that a few amount of HC emission was reduced even the catalysts were aged. It is expected to develop a solution kit applicable to a new vehicle or used one, to meet the emission regulation

A Study of Catalyst Temperature Rise Effect by using UEGI(Unburned Exhaust Gas Ignition) Technology during Cold-Start (냉시동시 미연 배기가스 점화 기술을 이용한 촉매 온도 상승 효과에 관한 연구)

  • Kim, C.S.;Chun, J.Y.;Choi, J.W.;Kim, I.T.;Ohm, I.Y.;Cho, Y.S.
    • Proceedings of the KSME Conference
    • /
    • 2000.11b
    • /
    • pp.335-340
    • /
    • 2000
  • Most vehicle's exhaust emissions come from the cold transient period of the FTP-75 test. In this study, UEGI technology was developed to help close-coupled catalytic converter (CCC) reach light-off temperature within a few seconds after cold-start. In the UEGI system, unburned exhaust mixture is ignited by four glow plugs installed upstream of the catalyst. Experimental results showed that the temperature of CCC rises faster with the UEGI technology, and the CCC reaches light-off temperature earlier. Under the conditions tested, the light-off time of the baseline case was 62 seconds and that of the UEGI case was 33 seconds.

  • PDF

Exhaust Emissions Reduction using Unburned Exhaust Gas Ignition Technology and Hydrocarbon Adsorber (미연 배기가스 점화 기술과 탄화수소 흡착기를 이용한 배기저감)

  • Kim, C.S.;Chun, J.Y.;Choi, J.W.;Kim, D.S.;Lee, Y.S.;Kim, I.T.;Ohm, I.Y.;Cho, Y.S.
    • Proceedings of the KSME Conference
    • /
    • 2000.11b
    • /
    • pp.150-155
    • /
    • 2000
  • Exhaust emissions from vehicles are the main source of air pollution. Many researchers are trying to find the way of reducing vehicle emissions, especially in the cold transient period of the FTP-75 test. In this study, UEGI (Unburned Exhaust Gas Ignition) technology, warming up the close-coupled catalytic converter (CCC) by igniting the unburned exhaust mixture using two glow plugs installed in the upstream of the catalyst, was developed. It was applied to an exhaust system with a hydrocarbon adsorber to ensure an effective reduction of HC emission during the cold start period. Results showed that the CCC reaches the light-off temperature (LOT) in a shorter time compared with the baseline exhaust system, and HC and CO emissions are reduced significantly during the cold start.

  • PDF

Exhaust gas purification characteristics of M-90 fueled SI engine for passenger car (자동차용 M-90 스파크 점화기관의 배기가스 정화특성)

  • 김재휘;홍영표
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.20 no.4
    • /
    • pp.43-49
    • /
    • 1996
  • With the recent interest in methanol as a SI engine fuel, aldehyde emissions have become a greater concern. A M-90 fueled passenger car was operated in a chassis dynamometer using FTP 75 driving cycle to examine formaldehyde emissions. Formation process of aldehyde and methods to reduce them are discussed in this paper for a SI-engine passenger car operating by M-90. Aldehyde emissions have been found to be 3 to 7 times higher from M-90 than from gasoline, while CO, NOx, THC are as low or lower than gasoline. Noble metal compositions appeared to play a role in formaldehyde and unburned methanol emission performance. For example, catalyst Pd showed better reduction of both formaldehyde and methanol than catalyst Pt. however, emission rates of formaldehyde and methanol for catalyst Pt were relatively similar to catalyst Pt/Rh.

  • PDF

Comparison of Combustion, Emissions and Efficiency Characteristics as Varying Spark Timings and Excess air ratios in an Ammonia-fueled Direct Injection Spark Ignition Engine (직접분사식 암모니아 전소 엔진에서 점화 시기와 공기과잉률의 변경에 따른 연소 및 배기, 효율 특성 비교)

  • Yonghun Jang;Cheolwoong Park;Yongrae Kim;Young Choi;Chanki Min;Seungwoo Lee;Hongkil Baek;Jeongwoo Lee
    • Journal of the Korean Institute of Gas
    • /
    • v.27 no.3
    • /
    • pp.1-10
    • /
    • 2023
  • Due to the development of the industrial revolution, regulations on exhaust emissions have been continuously strengthened to reduce the rapidly increasing greenhouse gas emissions. The use of environmentally friendly fuels is essential to meet these regulations. Hydrogen has been attracting attention as a future environmentally friendly fuel, but due to its material properties, it faces significant challenges in handling and storage. As an alternative, ammonia has been proposed. Ammonia can be easily liquefied at room temperature compared to hydrogen and has a high energy density. In order to examine the applicability of ammonia as an engine fuel, experiments were conducted to investigate the effects of changes in combustion control parameters in a direct injection ammonia combustion engine. The experiments were conducted by varying two variables: spark timing and excessive air ratio. Observations were made on combustion stability and the trends of exhaust emissions such as nitrogen oxides and unburned ammonia under the conditions of an engine speed of 1,500 rpm and medium to high loads (brake torque of 200 Nm). By optimizing the combustion control parameters, conditions for stable combustion even when using ammonia as the sole fuel were identified, and plans are underway to apply strategies for future expansion of the operating range.